CSEC Type Chemistry Questions Paper 02

SECTION A

Answer ALL questions in this section.

1. The molar and mass concentrations of sodium hydroxide solution were determine by observing the temperature change in a neutralization reaction.

A pipette was used to transfer 35 cm³ of sodium hydroxide to a polystyrene cup. A measuring cylinder was used to transfer 40 cm³ of 0.25 mol dm⁻³ of sulphuric acid at 5 cm³ intervals to the polystyrene cup. The highest temperature reached after each addition was recorded.

Table 1 shows the volumes of sulphuric acid used to react with 35 cm³ sodium hydroxide and the highest temperature changes that occurred.

TABLE 1: EXPERIMENTAL RESULTS

Volume of H₂SO₄ added (cm³)	Temperature (°C)
0	26.0
5	30.0
10	34.5
15	37.5
20	39.5
25	39.5
30	36.5
35	34.0
40	30.0

a)

(i) →5cm ³	Plot a graph for temperature against volume of acid added using 2 cm $ ightarrow$ 5°C on th	e y-axis and 2cm
7 3 6 111	on the x-axis.	[3 marks]
(ii)	From the graph, determine the temperature at which neutralization occurs.	[1 mark]
(iii)	Determine the volume of H ₂ SO ₄ used at the end point of the reaction.	[1 mark]
(iv)	Calculate the number of moles of H ₂ SO ₄ in the value determined from the graph.	[2 marks]
(v)	Write a balanced chemical equation for the reaction.	[2 marks]
(vi)	Determine the number of moles of sodium hydroxide in the pipette volume.	[2 marks]

	(vii)	Calculate the number of moles of sodium hydroxide in 1000 cm ³ of solution.	[2 marks]
	(viii)	Calculate the mass of sodium hydroxide present in 1000 cm ³ of solution.	[2 marks]
b)	sodium types o	ction between sodium hydroxide and sulphuric acid causes an increase in temperate carbonate reacts with ethanoic acid the temperature decreases. These are example freaction: Based on the information given, what type of reaction is	les of two different
		 NaOH and H₂SO₄	
	ii		[2 marks]
		NaOH and H ₂ SO ₄	
		Na ₂ CO ₃ and CH ₃ COOH	
	iii	Derive the ionic equation for the reaction between sodium carbonate and ethanshow the removal of the spectator ions.)	[2 marks] oic acid. (Be sure to
			[2 marks]
c)	on coo white p dilute a forming	ting a sample of solid T , with a valency of 2, a yellow solid, U , was observed when hot ing with the liberation of gas V . The gas V liberated was bubbled through limewate recipitate. Two separate mixtures of T were made, by adding distilled water to some equeous ammonia solution was added one of the mixture a white precipitate form g a colourless solution in excess. Adding potassium hexacyanoferrate solution to the strecipitate.	er to form a cloudy of the solid. When ned which dissolves
	i	. Identify gas solids T and U and gas V .	[3 marks]

Write the equation, in terms of **T**, for the decomposition of solid **T**.

ii.

[1 mark]

Pot 19.	Total 25 mark s assium has two isotopic forms with mass numbers 39 and 41 respectively. Potassium has an atomic number o
a)	Draw a labelled diagram to illustrate the number of protons, neutrons and electrons present in an atom or potassium 41.
	[3 marks
b)	To which group of the periodic table does element potassium 41 belong? Give a reason for your answer.
	Element potassium 41 belongs to Group
	Reason:
c)	What differences, if any, are expected between the chemical reactions of potassium 39 and potassium 417 Explain your answer.
d)	What type of chemical bonding will be formed when potassium 39 combines with $^{16}_{8}O$? Give a reason for you answer.
	Type of chemical bonding:

2.

Reason:

[3 marks]

e)	Write the chemical formula of the compounds expected to be formed when potassium 39 combine with those
	of oxygen 16.
	Chemical formula:
	[1 mark]
f)	Potassium oxide and calcium oxide have melting points 740°C and 2572°C, respectively. Account for the
	difference in their melting points.
	[4 marks]
	Total 15 marks

Bel	ow are f	five organic con	npounds, A, B, C, D ar	nd E.		
н	$\begin{array}{ccc} & H & H \\ I & I \\ -c & = c \end{array}$	н н			H H H H H H H-C-C-C-C-C-C-H H H H H H H Compound D	
Н		H H H H H H H H H H H H H H H H H H H				
a)	i)	Which compo	unds belong to the sa	me homologous series?		
						[1 mark
	ii)		nologous series to wh		named in a) i) belong, and giv	re a reason fo
	iii)	State the relat	ionship that exist bet	ween compound C and co	ompound E.	[2 marks
						[1 mark
b)	Compo the rea Reagen	ction.		nd C via hydration. State t	the reagent(s) and condition(s) necessary fo
						[2 marks
د١	Dagarila		may be used to distin	aguish Compound A from	Compound D	

3.

d) Coi sm	mpound B and Compound C react in the presence of conc. H_2SO_4 to form an organic posell.	[3 marks] roduct with a sweet
i.	State two reasons for using conc. H ₂ SO ₄ .	
ii.	Draw the full structural formula of the organic product that is formed when Compound C.	ound B reacts with
	Structure:	
		[2 marks]
	embers belonging to the homologous series of Compound C may be detected on a driesthalyser test.	ver's breath via the
i.	Identify the oxidizing agent that is used in the breathalyser test.	
ii.	State the colour change that takes place when the oxidizing agent has been reduced.	[1 mark]
		[1 mark]

Total 15 marks

SECTION B

Answer ALL questions in this section.

- 4. Zinc carbonate (ZnCO₃) and copper metal (Cu) are both treated with an excess of concentrated and dilute nitric acid, respectively, in separate experiments.
 - a) Write two balanced chemical equations, including state symbols, for the reactions above.

[4 marks]

b) Write the ionic equation for the ZnCO₃ and dilute nitric acid reaction.

[2 marks]

i. Write the oxidation half equation.

[1 mark]

ii. Write the reduction half equation.

[1 mark]

c) State the expected observations for the above reactions.

[3 marks]

- d) With the aid of a labelled diagram, describe one way in which ammonia may be prepared in the laboratory. Be sure to include the
 - Reagents needed
 - Drying agent
 - Chemical equation

[4 marks]

Total 15 marks

5. Aluminium is extracted from alumina by electrolysis. The electrolyte is a molten mixture of aluminium oxide and cryolite. Figure 1 below shows the extraction of aluminium via electrolysis.

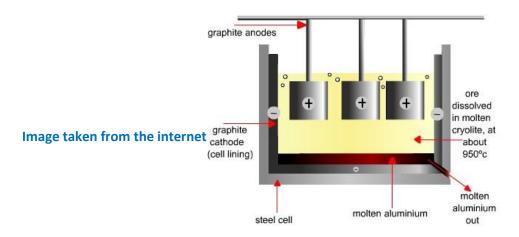


Figure 1: The extraction of aluminium via electrolysis.

 d) Calculate the mass of the aluminium will be extracted after 5 minutes and 30 seconds at 5 amperes. marks] 	[3
e) In the electrolysis of copper (II) sulphate using copper electrodes the copper electrode decreases in mass. i. Give an account for this observation. [2 ma ii. Draw a detailed labelled diagram showing the electrolysis of copper (II) sulphate using copper electrodes [3 ma	5.
Total 15 m	arks
The international community has developed innovative technological ways of reducing the effect of pollution in environment. Green chemistry was developed so as to minimize this effect.	ı the
a) Define the term pollution. [2 ma	rks]
b) Identify TWO sources of water pollution. [2 ma	rks]
c) Define the term Green Chemistry. [2 ma	rks]
d) State THREE principles of green chemistry. [3 ma	rks]
e) Carbon monoxide is used to reduce haematite (Fe_2O_3) to produced iron in the blast furnace liberating cardioxide.	rbon
 Write the balanced chemical equation, including appropriate state symbols, for the reaction above marks] 	/e. [2
 ii. Calculate the mass of iron produced if 0.12 dm³ of carbon dioxide produced at room temperature pressure (rtp). [4 marks] 	and
[Relative atomic mass of Fe = 56; One mole of gas occupies 24 dm³ at rtp] Total 15 m	arks

[1 mark]

[4 marks]

[2 marks]

a) Define the term 'electrolysis'.

6.

b) Write the anodic and cathodic half equation.

c) Outline the role and importance of cryolite.