

Primary Mathematics

Contents

Term 1	Unit 3: Geometry	
Unit 1: Number	Chapter 6 3-D solids and nets	76
Chapter 1 Sets7	Revising what you know about shapes and their properties	77
Members of a set9	Solis shapes	
Equal and equivalent sets11	Exploring polyhedra	
Finite and infinite sets12	Nets	
Subsets	Nets	03
Venn diagrams14	Unit 4: Statistics and probability	
Intersection and union of sets16	Chapter 7 Data handling	90
Disjoint sets18	Data handling	
Chapter 2 Place value	Collecting information	
and exponents24	Presenting data in graphs	
Revising multiplication and	Revising tables, tallies and pictographs	
division concepts25	Bar graphs	
Reviewing HCF and LCM25	Histograms	
Exploring place value27	Drawing a line graph	
Large numbers in real life29	Pie charts	
Exponential form30	Stem-and-leaf plots	
Scientific notation and standard form 32	Using data	
Unit 2: Measurement	PEP task	116
Chapter 3 Distance and scale 39	T 2	
Revising fractions and ratios40	Term 2	
Revising units of measurement41	Unit 1: Number	
Reading a map43		404
Scale measurements44	Chapter (3) Types of number	
Scale drawings48	Prime and composite numbers	
Chapter 4 Time 54	Factors and prime factors	
The 24-hour system56	The highest common factor (HCF)	
Solve problems involving time	The lowest common multiple (LCM)	127
	Chapter 9 Fractions	. 133
Chapter S Perimeter65	Skills to help you calculate	
Measuring and calculating perimeter 66	with fractions	
Using properties of shapes to work out perimeter67	Adding fractions and mixed numbers	135
Finding the perimeter of regular polygons . 69	Subtracting fractions and mixed	127
Solving problems involving perimeter 70	numbers	
Johnny problems involving perimeter 70	Multiplying fractions	138

Making calculating easier140	Area of triangles21!	5
Dividing a fraction by a whole number 141	Area of compound shapes217	7
Reciprocals143	Surface area220	O
Using reciprocals for division144	Chapter 12 Area and volume 226	5.
Chapter (1) Decimals150	Unit solids22	
Skills to help work and calculate	Volume of cuboids229	
with decimals152		
Adding decimals154	Unit 3: Geometry	
Subtracting decimals158	Chapter (3) Symmetry and	
Multiplying decimals and	congruence237	7
whole numbers160	Symmetry in common shapes	
Multiplying decimals together162	and objects238	3
Dividing decimals by powers of 10164	Similar and congruent shapes24	1
Dividing a decimal number by a	Symmetry in compound shapes244	4
whole number165	Chapter 16 Coordinates and	
Dividing decimals by decimals167	reflections250)
Chapter T Ratio and proportion 174	Using coordinates25	
Reading, writing and representing ratios 175	Reflections254	
Equivalent ratios177		
More about equivalent ratios179	Unit 4: Algebra	
Ratio and proportion181	Chapter 17 Inequalities, variables	
Applying our understanding of ratio183	and number patterns262	2
Chapter Percentages189	Using letters and symbols263	
Introducing percentages190	The language of algebra264	
Equivalent percentages and fractions191	Order of operations26	
Fractions, decimals and percentages 192	Inequalities267	
Percentages of quantities194	More inequalities268	
Using a calculator to find	Expressions, variables and equations270	
percentages of quantities196	Number patterns and sequences272	
Increasing and decreasing	Exploring number patters	
by percentages199	and using tables273	3
Converting between ratios, fractions	The <i>n</i> -th term27!	
and percentages201	T 2	
Unit 2: Measurement	Term 3	
	Unit 1: Number	
Chapter (3) Area and tessellations207		1
Tessellation208	Chapter 18 Money matters 28'	
	The financial sector	
Area of rectangles211	Deposits and withdrawals286	
Area of squares213	Interest288	
	Urotit and loce 70°	

Chapter 19 Problem solving	298
More about two-step problems	299
Problems involving decimals	302
Problems involving percentages	
Using patterns and rules to	
solve problems	307
Unit 2: Measurement	
Offic 2. Medsdreffferic	
Chapter 20 Circles	313
Parts of a circle	314
Drawing circles	316
Exploring circumference and diameter	318
Chapter 21 Speed, time	
and distance	325
Speed, distance and time	
Calculating average speed	527
and time taken	329
Road safety	
-	
Unit 3: Geometry	
Chapter 22 Angles	338
Classifying angles	
More angles	
Measuring angles with a protractor	
Drawing angles with a protractor	
	5 15
Unit 4: Algebra	
Chapter 2 Solving	
simple equations	350
Simplifying and evaluating	
algebraic expressions	351
Writing equations to solve problems	352
Balance the weights	353
Solving equations	354
Solving word problems with algebra	
Unit 5: Statistics and probability	
Chapter 2 Probability	361
Probability concepts	362
The probability scale	363
Possible outcomes	365

Calculating probability Probability experiments	366
Practice test	373
Glossary and Index	381

TERM UNIT 1: NUMBER p7 Sets **UNIT 2: MEASUREMENT** Place value and exponents p39 **Perimeter** 6cm **Distance UNIT 3: GEOMETRY** and scale Time p76 3-D solids and nets UNIT 4: STATISTICS AND PROBABILITY p90 Data handling

PEP TASK

p116

Unit 1: Number

Chapter Sets

In this chapter you will explore this focus question:

What special symbols and language do we use when working with sets?

To answer this question, you will:

- identify the members of α set
- associate the members of a set with the properties of the set
- distinguish between equal and equivalent sets
- distinguish between finite and infinite sets

- list the members in the intersection or union of two sets
- draw Venn diagrams to show the intersection of two sets
- know and use the symbols for set notation.

Car

14

people

Starting point

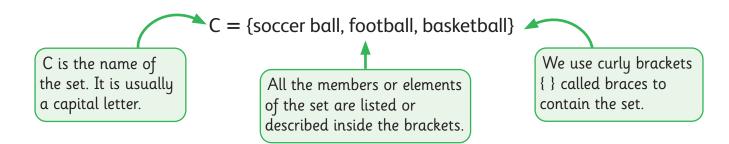
1 Shawnae asked people whether they travelled by car or by bus to get to work.

She drew this diagram to show what she found out.

Discuss these questions with a partner.

- **a** What information does this diagram give you?
- **b** How is the information shown?
- Ms Byers walks to work. She doesn't use the car or the bus. How could you show this information on the diagram?
- d Mr Johnston uses his car to go to work on Monday, Wednesday and Friday but he uses the bus on Tuesday and Thursday. How could you change the diagram to include 5 people who use both types of transport?
- e Nobody uses the train to travel to work. How would you show this on a Venn diagram? Why?
- 2 A set is a collection of things that have something in common. Look at the pictures. What do each of these sets have in common?

MPLE


Bus

18

people

In maths we use special symbols and notation for sets. We can write set C like this:

- 3 Look at these sets:
 - **a** {1, 3, 5, 7, ...}

How would you describe this set? What do you think the three dots mean?

b {0, 1, 2, 3, ..., 18, 19, 20}

How would you describe this set?

This time the three dots are in a different place. What do you think this means in this set?

c {a, e, i, o, u}

How would you describe this set?

d {}

How would you describe this set? Why?

e Create your own set and write it in curly brackets. Challenge a partner to describe your set.

Members of sets

Key maths idea

A **set** is a well-defined collection or group. How would you define this set?

The set of vowels in our alphabet can be written as Vowels = $\{a, e, i, o, u\}$

The set of vowels has five members or elements.

The five **elements** or **members** are written as a list inside **curly brackets** (**braces**), each separated by a comma. This is called **set notation**.

We use the **symbol** \in to show that an item is a member or element of a set.

Example $a \in \{a, e, i, o, u\}$

Key words

set
element
member
curly brackets
(braces)
set notation
symbol
universal set
null set (empty
set)

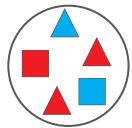
To show that an item is not a member or element of a set we cross through the element symbol like this: \notin

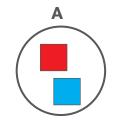
Example $b \notin \{\alpha, e, i, o, u\}$

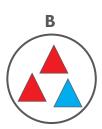
The set of vowels is part of the larger set of letters of the alphabet. We can say that the alphabet is the **universal** (largest) **set** in this example. The universal set contains all the possible members you may use in a particular problem. We use the letter U to represent the universal set.

A set that has no members is called an **empty set** or **null set**. This is shown using the symbol \emptyset or $\{\}$.

The set of town names in Jamaica that contain only vowels would be an example of an empty set.


Remember these important symbols:


- ∈ member of a set
- ∉ not a member of a set
- ∪ universal set
- Ø or {} null set or empty set


- 1 Use set notation to list the members of these sets:
 - **a** five subjects you study
 - **b** three animals that can swim
 - c letters in your name.
- 2 How many members are in each of these sets?
 - a odd numbers between 1 and 10
- **b** months of the year

c letters of the alphabet

- d integers between 4 and 6
- 3 Daniel has this universal set of shapes.

He puts them into sets A and B.

- a Copy and complete these set notations:
- A = { ...
- B = { ...
- **b** How could you reorganise the shapes to make two different sets? Use set notation to list the members of these new sets.
- **4** Copy and complete these set notations using the symbol \in or \notin .
 - a 1 {odd integers}
 - **b** November {\begin{aligned} \{\days \text{ of the week}\} \end{aligned}
 - c F {consonants of the alphabet}
 - d { _ , _ , _ , _)}

Equal and equivalent sets

Key maths idea

Equal sets have the exact same members or elements. The order of the members does not matter as long as the members are exactly the same.

Example

$$\{ \diamondsuit, \diamondsuit, \diamondsuit, \bigcirc \} = \{ \diamondsuit, \bigcirc, \diamondsuit \}$$

$$\{ \diamondsuit, \diamondsuit, \bigcirc \} \neq \{ \diamondsuit, \bigcirc, \bigcirc \}$$

$$\{2, 4, 6, 8\} = \{8, 6, 4, 2\}$$

Equivalent sets have the same number of members.

The members of each set do not need to be the same.

This symbol shows that sets are equivalent: ← →

This symbol shows that sets are not equivalent: ◆/▶

Example

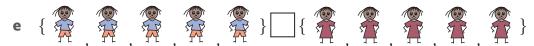
Choose the pairs of sets that are equal to set A.

 $E = \{ \square, X, \stackrel{\wedge}{\longrightarrow}, \square \}$

$$C = \{ \uparrow, \bigcirc, \square, X, \square \}$$

$$\mathsf{F} = \{ \mathbf{X}, \mathbf{\uparrow}, \mathbf{\diamond}, \mathbf{\bullet}, \mathbf{\bullet} \}$$

$$\mathsf{D} = \{ \boxed{\ }, \cancel{\bigstar}, \cancel{\mathsf{X}}, \boxed{\ }, \cancel{\mathsf{X}} \}$$


$$G = \{ , \bigcirc, \uparrow \}$$

Remember: equivalent sets

have the same number of members. The members do

not need to be the same.

- 2 Copy and fill in the symbol $\leftarrow \rightarrow$ or $\leftarrow \rightarrow$ between the pairs of sets.
 - $a \{6, 3, 2, 1\} \left[\left(\bigwedge, \bigcirc, \bigcap, \bigcap, \bigwedge \right) \right]$
 - **b** $\{ \diamondsuit, \diamondsuit, \diamondsuit \}$ $\{ C, +, \div \}$
 - c $\{=, >, \sqrt{\pi}\}$ $\left[\frac{1}{2}, \frac{1}{3}, \frac{3}{4}, \frac{3}{7}\right]$
 - **d** {A, B, C} {?, !, ;}

- {factors of 9} {factors of 8}
- Draw four equivalent sets with five members.

Key words

equal sets equivalent sets

Finite and infinite sets

Key maths idea

A set with limited members is called a **finite set**.

Example

Set $B = \{Nathaniel, Jada, Joshua\}$

Set B has three members. These are the members limited to this set.

In some sets, you may notice three little dots. These are called ellipsis and this means 'continue on'. The next set contains the first few prime numbers, but they go on infinitely. We draw three dots at the end of the set to show this.

This is an example of an **infinite set**:

Now look at this set:

This set shows multiples of 7, up to 12×7 . The ellipsis in this set shows that there are more multiples of 7 between 21 and 84, but these are not listed. This is a finite set.

- 1 Describe each set and say if it is finite or infinite.
 - **a** {5, 10, 15, 20, 25, 30}
 - **b** {0, 1, 2, 3, ...}
 - **c** {5, 6, 7, 8, ..., 44, 45, 46}
 - **d** $\{..., -2, -1, 0, 1, 2, ...\}$
 - **e** {3, 6, 9, ..., 33, 36}
- **2** Write finite or infinite set for each of the following sets:
 - a days of the week
- **b** hours in a day
- c multiples of 6
- **d** the set of all integers.
- **3** Write each of these sets in set notation. If the set is infinite, list at least five members before using the ellipsis.
 - a the set of factors of 24
 - **b** the set of multiples of 9
 - c the set of prime numbers to 31
 - d the set of even numbers greater than 40
 - e the set of positive integers with 2 in the ones place

infinite set

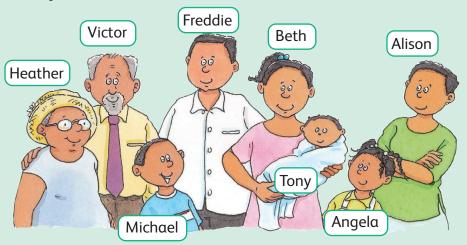
Subsets

Key maths idea

Sets can be further organised into smaller sets.

When you put the members of a set into smaller sets, these smaller sets are called **subsets**.

Owls are a particular type of bird, so every owl is also a bird. We can express this in the language of sets by


saying that the set of owls is a subset of the set of birds. {owls } \subset {birds} because every owl is a bird.

U

Birds

Jamaican owl

The symbol \subset means 'is a subset of'.

{Michael, Angela, Tony} \subset {Heather, Victor, Freddie, Beth, Alison, Michael, Angela, Tony}

This means that the set of the children is a subset of Angela's family.

If Set A = $\{1, 2, 3, 4, 5\}$, then sets $\{1, 2, 3\}$, $\{3, 4\}$ and $\{1\}$ are all subsets of Set A.

We can show subsets in set notation: $\{1, 2, 3\} \subset \{1, 2, 3, 4, 5\}$ We say this aloud as 'the set 1, 2, 3 is a subset of the set 1, 2, 3, 4, 5'.

(6) is not a subset of (1, 2, 3, 4, 5) because 6 is not in the parent (main) set.

In set notation, we write: $\{6\} \not\subset \{1, 2, 3, 4, 5\}$

We say this aloud as 'the set 6 is not a subset of the set 1, 2, 3, 4, 5'.

Key word subset

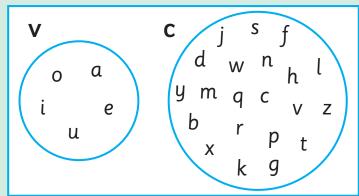
- Write down whether each statement is true or false:
 - **a** $\{\text{Wednesday}, \text{Thursday}\} \subset \{\text{days of the week}\}$
 - **b** {multiples of 4} \subset {even numbers}

- **d** $\{vowels\} \subset \{consonants\}$
- 2 Rewrite in set notation.
 - **a** All squares are rectangles.
- **b** Not all rectangles are rhombuses.
- $A = \{2, 3, 4, 5, 6, 7\}$ $B = \{2, 4, 7, 8\}$ $C = \{2, 4\}$
- **3** Copy and complete. Use the symbol \subset or $\not\subset$ to make the statements true.
 - **α** B _____ A

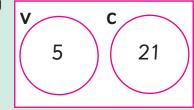
b C _____ A

c B C

- 4 Make four possible subsets of the set of polygons.
- **5** a List five members of the set of sports in set notation.
 - **b** Give three subsets of the set of sports in set notation.


Venn diagrams

Key maths idea



Key word Venn diagram

A **Venn diagram** uses circles in a frame to show sets and the relationships between them. For example, if $U = \{the 26 | teters \}$ of the alphabet}, $V = \{vowels\}$ and $C = \{consonants\}$, the Venn diagram could look like this:

Sometimes Venn diagrams show the number of members in each set without listing them all. This Venn diagram shows the same sets as the previous one, but it uses the number of members of each set rather than the letters.

If the members of the sets are shared, then the circles overlap.

The shared members are written in the overlapping section.

This Venn diagram shows:

 $U = \{26 \text{ letters of the alphabet}\}\$

A = {letters in the word CHICKEN}

 $B = \{\text{letters in the word JERK}\}\$

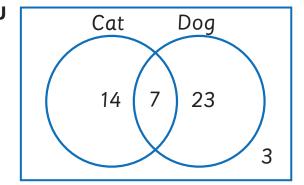
E and K are members of set A and set B.

A B D F G L M O P Q S T U V W X Y

These letters are not found in set A or set B, but they are in the universal set U.

1 If $U = \{\text{whole numbers from 1 to 50}\}$, draw Venn diagrams to show these sets:

	Set A	Set B
α	Numbers from 1 to 10	Prime numbers
b	Odd numbers from 2 to 20	Composite numbers
С	Numbers from 1 to 20	Factors of 25
d Prime numbers between 5 and 50 Multiples of 5		Multiples of 5
е	Multiples of 10	Multiples of 20


U

U

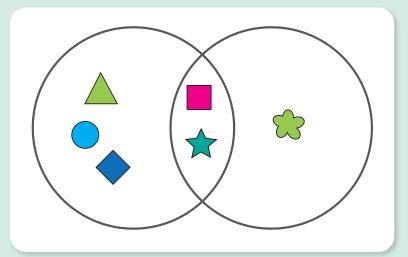
2 Leroy asked people whether they liked cats or dogs. He drew this Venn diagram.

Discuss these questions with a partner.

- **a** How many people liked both cats and dogs?
- **b** How many people didn't like cats or dogs?
- **c** How many people liked cats?
- d How many people liked dogs?
- What is the universal set in this example? How many members are in the universal set?
- 3 Look at this Venn diagram.
 - a How many members does the universal set contain?
 - **b** Describe the set of students who go to maths lessons after school.
 - c How many students have both maths and Spanish lessons after school?
 - d Use set notation to list the members of the set 'Does not do maths or Spanish lessons after school.'

Intersection and union of sets

Key maths idea

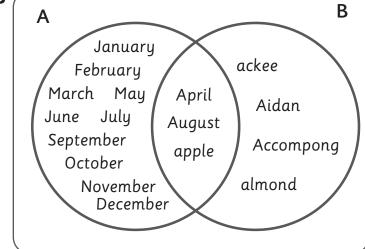

The **intersection** of two sets is the set of members that both sets have in common. The symbol for intersection is \cap .

Example

The intersection of two or more sets is shown on a Venn diagram by overlapping the circles.

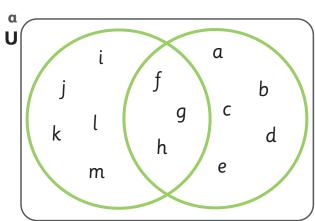
U

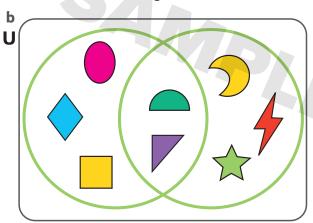
The **union** of two sets is the combined members of both sets. Each member is listed once only.


The symbol for union is \cup .

Example

- 1 Look at the Venn diagram.
 - **a** Use set notation to write the intersection of sets A and B.
 - **b** Name some more members that could be in set B.
 - **c** What could you name set A?
 - **d** What could you name set B?
 - Where would you place the word 'soursop' in this Venn diagram?


u



Key words intersection

union

2 Write the union and intersection of the sets shown in the Venn diagrams below.

- **3** Copy and complete these statements. Represent them in a Venn diagram.
 - $a \{1, 2, 3, 4, 5, 6\} \cap \{2, 4, 6, 8, 10\} =$
 - **b** $\{1, 2, 4, 7, 11, 16, 21\} \cap \{\text{whole numbers from 0 to 15}\} =$
 - **c** $\{a, b, c, d, e, f, g\} \cap \{b, e, l, v, w\} =$
 - **d** {even numbers between 3 and 11} \cap {prime numbers between 1 and 10} =
- 4 Copy and complete.
 - **a** $\{1, 4, 9, 16, 25\} \cup \{4, 8, 10, 12, 14, 16\} =$
 - **b** {Liam, Kyle, Amelia, Ariana} \cup {Liam, Amelia, Ashley} =
 - c $\{80, 90, 100\} \cup \{88, 89, 90, 91, 92\} =$
- **5** Copy and complete the statements (use the symbol \cap or \cup).
 - **a** {days of the week} [{weekend days} = {Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, Sunday}
 - **b** $\{1, 2, 3, 4, 5, 6\}$ $\{2, 4, 6, 8, 10\} = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$
 - c $\{2, 3, 4\}$ $\{1, \overline{2, 3}, 4, 5, 6\} = \{2, 3, 4\}$
- 6 You have these sets:
 - $U = \{\text{whole numbers less than 20}\}\$
 - $A = \{square numbers less than 20\}$
 - $B = \{\text{even numbers less than 20}\}\$
 - $C = \{odd numbers less than 20\}$
 - **a** Draw a Venn diagram to show sets A and C.
 - **b** Draw a different Venn diagram to show sets B and C.
 - c What is $A \cap B$?
 - **d** List the members of $A \cup B$.
 - e Draw a Venn diagram to show the relationship between sets A and B.

Disjoint sets

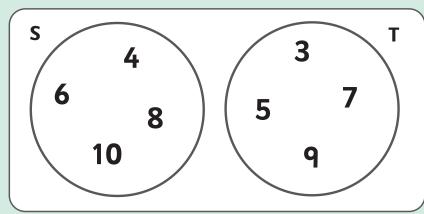
Key maths idea

Set A and set B are equivalent sets because they have the same number of members. But they have no common members.


$$A = \{2, 3, 4\}$$

$$\mathsf{B} = \{ \bigcirc, /\!\!\!/, \triangle \}$$

Two sets that have no common members are called **disjoint sets**.


We can show this in a Venn diagram:

The sets $S = \{4, 6, 8, 10\}$ and $T = \{3, 5, 7, 9\}$ are disjoint. They have no common members.

U

Compare the sets in each pair and say whether they are disjoint or not.

- 1 $A = \{\text{things we wear on our feet}\}; B = \{\text{running shoes}\}$
- 2 $C = \{\text{things we eat}\}; D = \{\text{running shoes}\}$
- **3** $E = \{mango, pineapple, soursop\}; F = \{apple, banana, orange\}$
- **4** G = {Mara, Lisa, Jayden}; H = {Yohan, Elaine, Stacey}
- 5 $I = \{3, 6, 9, 12\}; J = \{2, 4, 8, 16\}$

Key word disjoint sets

Real-world maths: A cat food survey

Catzdelight

VetCare Clinic in Mandeville did a survey to help them decide which cat food to buy to feed the animals in their hospital and boarding kennels.

Kittymunch

3

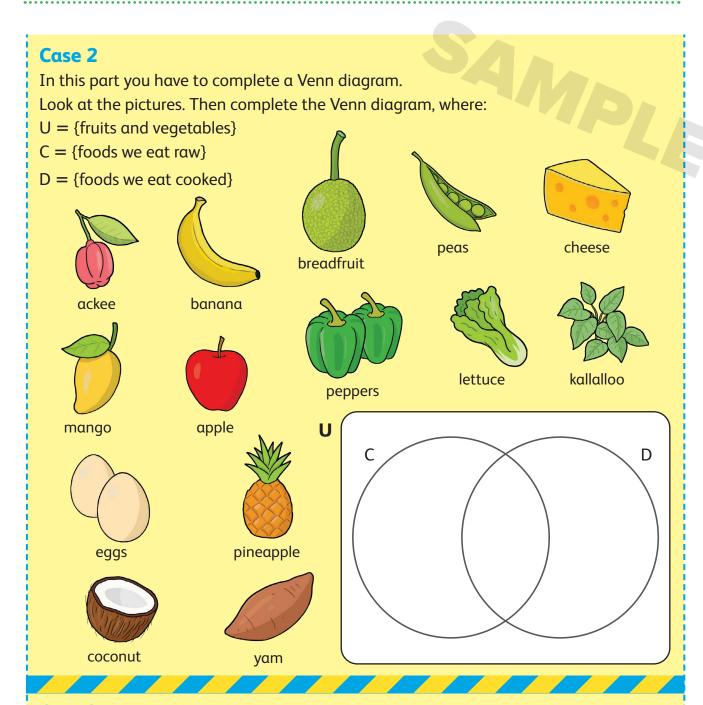
4

8

- The clinic tested two types of food (Kittymunch and Catzdelight) by feeding them to a set of 24 cats in their care. They drew this Venn diagram to show their results.
 - a How many cats ate both types of food?
 - b How many cats didn't eat either kind of food?
 - which of these two cat foods would you recommend they buy? Why?
 - **d** One of the vets says this is helpful, but that they need to try more options. Why do you think she said that?
- 2 The clinic director decided to do another test. She fed 25 cats in the boarding kennels Catzdelight and HappyCat. One cat didn't like either food. A quarter of the other cats liked both types of food, and two-thirds liked Catzdelight.
 - **a** Use this information to draw a Venn diagram of these results.
 - b How many cats only liked Catzdelight?

Maths detective: Things that belong together

Use the clues to help you solve each case.


Case 1

Look at the picture of items displayed at a grocery store.

Grocery stores use sets to organise and display items.

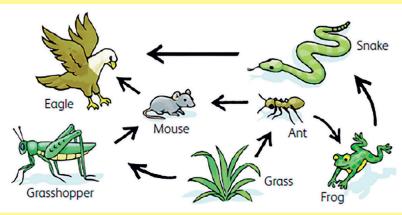
- 1 Make and name 5 different sets of items you can buy at the grocery store.
- 2 Describe each of the 5 sets.
- 3 How many members are in each of your 5 sets?
- 4 Name and list two sets that are equivalent and write down why they are equivalent.
- 5 Write down the union of your two equivalent sets. Remember to use set notation.

Case 3

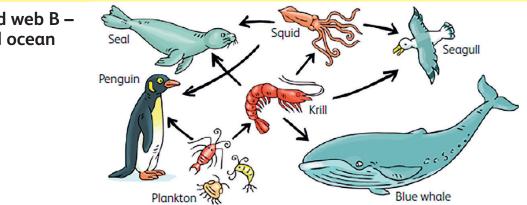
Now use what you know about union and intersection to solve this case.

List the letters of the word CARNIVORE as set A.

List the letters of the word HERBIVORE as set B.

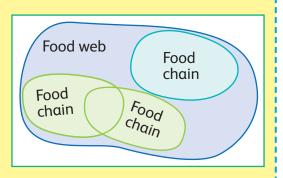

- 1 Represent set A and set B on a Venn diagram.
- 2 What is the intersection of A and B?
- 3 Use set notation to list $A \cap B$.
- 4 Describe the members of the set of letter(s) common to both sets.
- 5 The members of set A and set B are combined. Write the set notation and list the members of the combined set.

Case 4


Some animals eat plants, some eat other animals (meat) and some eat both plants and other animals.

Here are two food webs showing what different types of animals eat. The arrows mean 'is eaten by'.

Food web B -Cold ocean



- Answer these questions about the food webs.
 - How many of these animals only eat plants?
 - How many of these animals only eat other animals?
 - How many of these animals eat both plants and other animals?
- Draw a Venn diagram to show this information. Use the number of members in each set.

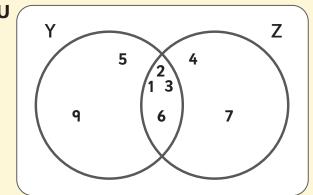
Case 5

Ronnie was doing his Science homework and he found this Venn diagram on the internet.

- What does this Venn diagram show?
- Redraw the Venn diagram and fill in plants and animals that could fit into the different sets. Use a local environment that you have learned about.

What I have learned

Read the sentences. Copy them and fill in the missing words to summarise what you learned in this topic.


- 1 Two sets are ____ if they have the same number of members.
- 2 Two sets are _____ if they have no shared members.
- 3 If all the members can be counted or listed, the set is _____.
- 4 The ____ set is another name for the null set.
- 5 The _____ of two sets is the set of members common to both sets.
- 6 The _____ of two sets is the combined members of both sets with no members repeated.
- 7 A set is _____ if it has no last member.
- 8 A _____ is a diagram that shows the relationship between sets.

Practice questions

- 1 Look at the Venn diagram.
 - a How many members are in set R?
 - **b** What is $R \cap C$? Use set notation to write the answer.

R 11 2 C 15 15 4 5 20 21 3

- 2 Use the given information to draw and **U** label a Venn diagram.
 - $U = \{1, 2, 3, 4, ..., 18, 19, 20\}$
 - $A = \{even numbers less than 20\}$
 - B = {the first five prime numbers}
- 3 Look at this Venn diagram.
 - a List the members of set Y.
 - b How many members are in the universal set?
 - What are the members of $Y \cap Z$?
 - **d** List the members of $Y \cup Z$.

	Check if you can do this:	If you have difficulty, try this:
1	Identify the members of a set, and associate the members of a set with the properties of the set.	Go to pages 9–10 and remind yourself what we mean by 'set', and 'elements' or 'members'. Remember that the properties of a set are the characteristics or criteria that determine whether something belongs in the set or not.
2	Distinguish between equal and equivalent sets.	Go to page 11 and remind yourself what we mean by these terms.
3	Distinguish between finite and infinite sets.	Go to page 12 and remind yourself what we mean by these terms.
4	List members of the intersection of two sets, and list members of the union of two sets.	Revise page 16. Remember that the intersection is where two sets overlap, and the union is where two sets are joined.
5	Draw Venn diagrams to show the intersection of two sets.	Revise pages 14–15 and practise drawing sets that have elements in common.
6	Use the symbols for set notation.	Revise all the symbols you used on pages 13–18.

Primary Mathematics

Make maths fun, attainable and relevant with a series specifically designed for Jamaica's National Standards Curriculum by an expert team of authors in consultation with Jamaican educators.

- Enter new topics with exciting unit openers and Starting point activities to determine prior knowledge and learning readiness.
- Develop analytical skills with features such as Maths detective and Real-world maths activities.
- Provide a solid foundation for learning and PEP preparation at Grade 6.
- Consolidate learning at the beginning and end of each chapter with objectives, What I have learned activities, Practice questions and Self-check reflection.

