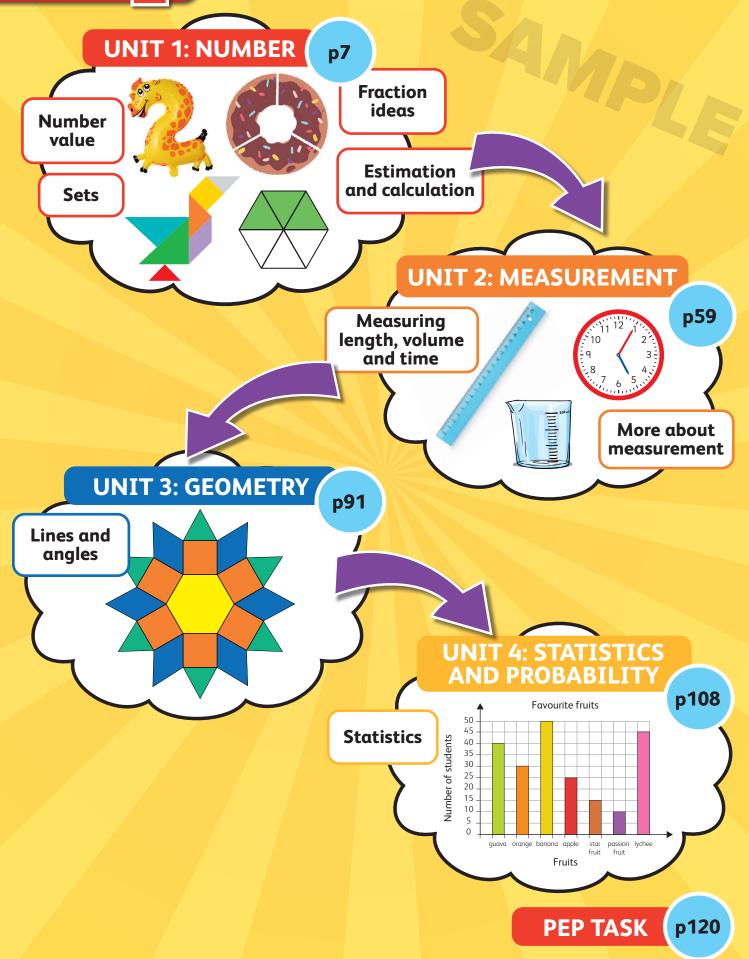


Primary Mathematics

Contents

Unit 2: Measurement Term 1 Chapter 5 Measuring length, **Unit 1: Number** volume and time59 Chapter 1 Number value7 Length......60 Numbers in different forms9 Estimating and measuring lengths61 Working with bigger numbers10 More about equivalence62 Large numbers11 Distances on a map64 Chapter 2 Sets 18 Capacity and volume65 Sets19 Convert between measures of capacity66 Venn diagrams21 Time69 Chapter 3 Fraction ideas 26 Reading the time70 Revise what you know about fractions 27 How long does it take?71 Unit fractions29 Chapter 6 More about Build a fraction chart30 Explore equivalence31 Grams and kilograms77 Compare and order fractions32 More about equivalence33 Temperature......82 Simplifying fractions34 Working with temperatures83 Improper fractions and mixed numbers 35 Calculating with units85 A fraction of a set36 Converting between units86 Adding and subtracting fractions 37 Finding the lowest common **Unit 3: Geometry** denominator (LCD)38 Adding and subtracting mixed numbers 39 Chapter 7 Lines and angles 91 Revisit points, lines, paths and corners 92 Problem solving with fractions40 Rays and angles93 Chapter 🕢 Measuring angles94 Estimation and calculation 46 Describing lines96 Revisit what you know about Exploring polygons98 estimating and calculating47 Quadrilaterals99 Working with base ten blocks and other materials48 Triangles......100 Mental calculation49 Congruent shapes102 Rounding off51 Unit 4: Statistics and probability Estimation 52 The commutative property54 Chapter (3) Statistics 108 The associative property55 Graphs and tables109


Populations and samples111

Biased samples112	Position on α grid	178
Methods of collecting information114	Slides, flips and turns	
Steps for collecting data116	Slide	.181
	Flip	.182
PEP task120	Turn	.183
Term 2	Unit 4: Algebra	
Unit 1: Number	Chapter B Patterns	407
Chapter Multiplication	and variables	
and division125	Geometric patterns	
Revisit what you know	Patterns and rules	
about multiplication126	Exploring number sentences Arithmagons	
How do you remember times tables? 127	Using variables to write expressions	
Properties of multiplication128	Equations	
Multiply by 10, 100 and 1 000129	Equations	. 197
Multiplying in different ways133	Unit 5: Statistics and probability	
Two-step problems135	Chapter (4) Working with data	202
More two-step problems136	Explore measures of central tendency:	202
The lattice method137	mean, median and mode	.203
Chapter ① Decimals142	Collecting and	
Revisit what you know about fractions 143	understanding information	.205
More fraction revision144	Using the mean to find the total set	.206
Tenths146	Solving problems using averages	.207
Hundredths147	Revisit what you know about graphs	.209
Decimals in grids and charts149	Using different graphs	. 211
Decimals on number lines150	Representing data in another way	213
Adding and subtracting decimals152	Line graphs	. 215
Unit 2: Measurement	PEP task	220
Chapter 🛈 Length and area 160	Term 3	
Areα162		
Finding areas of irregular shapes164	Unit 1: Number	
Distances between places167	Chapter (15) Multiplication	
Unit 3: Geometry	and division	225
	Division is equal sharing	
Chapter ② Symmetry	Using a calculator	
and position	Explore divisibility rules	
Lines of symmetry	Division with remainders	
Exploring symmetry	The relationship between	
Figures with more than one line of symmetry175	division and fractions	.235

Unit 2: Geometry	
Chapter 16 Properties of prisms Revisit what you know about plane shapes 3D solids Nets Prisms Why isn't it a cube or cuboid?	241 242 244 246
Unit 3: Algebra	
Chapter Using variables Revisit what you know about solving problems	253 254 255 258 259
Unit 4: Statistics and probability	/
Chapter Probability Probability The probability scale Sample space Probability experiments	271 272 273
Glossary and Index	. 280

TERM \P

Unit 1: Number

Chapter 1 Number value

In this chapter you will explore this focus question:

How do I know the value of a number?

To answer this question, you will:

- work with numbers that have up to seven digits
- distinguish between value, place value and face value.

Starting point

- Talk about the picture. What animal makes each number?
- Which ten different numbers could you make if you only had the first three balloons?
- The **face value** of the zebra is always 5. Its **value** can change depending on the position of the **digits** in a bigger number. This is called **place value**. What place value does 5 have in each of these numbers:
 - 3 015
- 580
- 5 600

Key words

PLE

number face value value digit place value

- 4 Start a small notebook for maths definitions and examples.

 Draw or write definitions of value, face value and place value.
- 5 Use the picture of the balloon numbers on the previous page. Which animal balloons would you use to make these numbers:
 - a two thousand, four hundred, forty-seven
 - **b** five thousand, three hundred, six
 - c eight thousand nineteen.
- 6 a Choose four of the animal balloons. Write ten different 4-digit numbers with them. You can use each animal as many times as you like in each 4-digit number.
 - **b** Write the numbers in ascending order (from smallest value to largest value).
- 7 We express a part of the whole using fractions, such as one half or $\frac{1}{2}$. Use what you know about fractions to complete these sentences.
 - a $\frac{3}{10}$ of the balloons are _____.
 - **b** ____ of the balloons are black-and-white.
 - **c** _____ of the balloons are orange.
 - **d** _____ of the set is brown.
- 8 Round the numbers you wrote in Exercise 3 off to the nearest thousand.

Remember to look at the hundreds digits. If it is 5 or more, round up. If it is 4 or less, round down.

Maths detective: Find the mistake!

Work with a partner. Each person writes a 3-digit number and five different number sentences, which give that number as a sum or difference. One of your number sentences should have a mistake. Get your partner to find the mistake!

Key words standard form

expanded form

word form

Numbers in different forms

Key maths idea

You can write numbers in different ways.

Using standard form: 4 627

In a place value chart:

Thousands	Hundreds	Tens	Ones
4	6	2	7

Expanded form: $4\,000 + 600 + 20 + 7$

Word form: four thousand, six hundred, twenty-seven

Standard form uses digits to show value of a number.

1 Are the numbers given below in standard form, expanded form or word form? Write the form and then write the number in numerals.

- a ten thousand one
- **b** 6 054
- c 7000 + 200 + 90 + 8
- d 8000 + 800 + 4
- e three thousand thirty-one
- f 740

2 Write these numbers using standard form.

- a ten
- **b** 10 + 5

c twenty

- d 100 + 10 + 0
- e 300 + 50 + 7

f four hundred seventy-five

- **g** one thousand
- h five thousand three hundred
- i 8 000 + eighty-three
- 3 Write the following numbers in expanded form.
 - a five thousand fifty-five
 - **b** eight thousand twenty-eight
 - c one thousand, two hundred, nineteen

Working with bigger numbers

Key maths idea

 $10 \times 1000 = 10000$

We say ten thousand.

 $10 \times 10000 = 100000$

We say one hundred thousand.

 $10 \times 100 000 = 1 000 000$

We say one million.

When you work with bigger numbers, it is important to look at the place value. The digit furthest to the left has the **greatest** place value. That means it has the largest value. The digit furthest to right has the smallest, or least, value.

Look at this number expressed in standard form: 1 435 605

Expanded form: $1\ 000\ 000\ +\ 400\ 000\ +\ 30\ 000\ +\ 5\ 000\ +$

600 + 5

Here is the place value chart:

N	Hth	Tth	Th	Н	Т	0
1	4	3	5	6	0	5

Word form (read the millions first): 1 million, four hundred thirty-five thousand, six hundred, five

- 1 Write the following numbers using numerals.
 - a two hundred thousand twenty-five
 - **b** five million fifty-three
 - three million, three hundred thousand, thirty
 - d one million, two thousand, eight
- Write the following numbers using standard form.
 - α 7 000 000 + 500 000 + 40 000 + 6 000 + 10 + 9
 - **b** $400\,000 + 7\,000 + 600 + 20 + 4$
 - $2\,000\,000 + 700\,000 + 60\,000 + 1\,000 + 500 + 10 + 9$
 - **d** 4000000 + 800000 + 4000 + 500 + 10
- **3** Write the following numbers in expanded form.
 - a 4678932

b 702 944

c 3 659 021

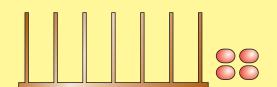
d 9 999 999

Key words

greatest largest

least

Maths detective: Large numbers



Case 1

- 1 Work in pairs. Write down ten 6-digit numbers you can make using only the digits 1 and 2.
- 2 Write them in order from least to greatest.
- 3 Compare with another pair.

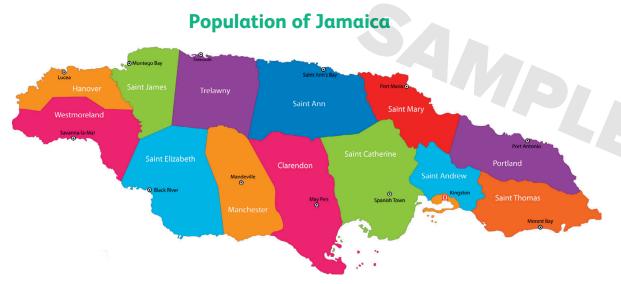
Case 2

- 1 Look at the abacus. Make four different numbers. Draw your answers and write the numbers you made.
- 2 Now write the numbers in order from largest to smallest.

Large numbers

Key maths idea

When do we use large numbers? Use the pictures to help you.



We use large numbers to talk about the **population** of a country. The Jamaican government holds a **census** every ten years to find out the population size. Each household has to fill in a **questionnaire**. A questionnaire is a list of questions that we use to collect information on a particular topic. The census provides **information** about the population and helps the government to plan its services.

Key words

population census questionnaire information

Parish	Population (2018)	Parish	Population (2018)	
1 Kingston and St Andrew	669 773	8 Hanover	70 265	
2 St Thomas	94 939	9 Westmoreland	145 628	
3 Portland	82 643	10 St Elizabeth	151 839	
4 St Mary	114 867	11 Manchester	191 881	
5 St Ann	174 203	12 Clarendon	247 702	
6 Trelawny	75 981	13 St Catherine	521 249	
7 St James	185 697			
Total population	2 726 667			

 $(Source: Statistical\ Institute\ of\ Jamaica,\ adapted\ from:\ https://statinja.gov.jm/Demo_SocialStats/EndofYearPopulationbyParish.aspx)$

- 1 Use the information in the table to answer the following questions.
 - a Which parish has the largest population?
 - **b** Which parish has the smallest population?
 - c What is the total population of Jamaica?
 - d Choose 2 parishes that would have over 1 000 000 people if they were added together.
 - e How many more people live in parish 3 than in parish 8? Show how you work this out.
 - f Write the population numbers of parishes 2 to 6 in ascending order.
 - **g** Add together the populations of parishes 4, 5 and 6.
- **2** Draw a place value chart and put the smallest population number digits in the correct columns.
 - a Write the number in expanded form.
 - **b** Write the number value for each digit.
 - **c** Write the place value for each digit.
- 3 Draw another place value chart and put the total population number in the correct columns.
 - a Write the number in expanded form.
 - **b** Write the number value for each digit.
 - **c** Write the place value for each digit.

Real-world maths: Number of students in a school

- 1 Why is it important to know how many children are at your school? Discuss this with your class.
- 2 a Make a questionnaire to find out the number of students and staff at your school, and how many children are in each class and grade.
 - **b** Use the questionnaire to collect the information.
- 3 List the following results:
 - a What is the total population of the school?
 - b How many of these are students and how many of these are staff?
 - **c** Which is the largest grade group?
 - **d** What is the difference in numbers between the largest and smallest grade group?

Real-world maths: Making big purchases

Choose one of the following problems to investigate.

- 1 Malia needs to buy a car for her cupcake business. These are her requirements:
 - It should be a hatchback so that she can easily pack deliveries into the back.
 - It must be no older than 3 years.
 - It must have less than 20 000 km mileage.
 - The budget is maximum \$3 250 000.

Use a newspaper or look online (for example, *jamaicars.com*). Identify three possible cars Malia could buy that would fit her requirements.

Discuss with a partner which would be the best buy.

- **2** Your family wants to buy a new big-screen TV set.
 - The screen must be 55 inches or larger.
 - It must be a smart TV, with WiFi and Bluetooth.

Use the newspaper or internet to identify three possible products at different prices. Compare the prices and explain why each is cheaper or more expensive than the others. Identify which is the best buy and explain why you would choose that one.

Real-world maths: A museum visit

A visit to the Bob Marley Museum in Kingston costs a family of three \$5 500. If they paid for it with 1 000-dollar bills, how many would they need? If they paid with 500-dollar bills, how many would they need? If they paid with 100-dollar bills, how many would they need?

Maths detective: Code crackers

Now use your skills to solve these cases!

Case 1

Chris Anderson scored over fifteen thousand runs in One Day International test cricket. The secret number is a whole number with 5 digits. The digit in the ones place is the product of 3×3 . The digit in the hundreds place is an even number that is smaller than 8 but larger than 4. The digit in the thousands place is equal to the quotient of 21 and 3. The digit in the ten-thousand place is the numerator in every unit fraction and the digit in the tens place is a factor of 10, 15 and 20. Using all the clues you should know the amount of runs by now.

- 1 What is the secret number?
- Write the secret number in word form.

Case 2

Now see if you can find this number:

I am a 4-digit number between 5 500 and 7 000.

I am odd.

I am a multiple of 5.

The digit in the thousands place is 1 more than the digit in the ones place.

The sum of my digits is 19.

The digit in the tens place is 3 more than the digit in the ones place.

Which number am I?

Case 3

Can you find this number?

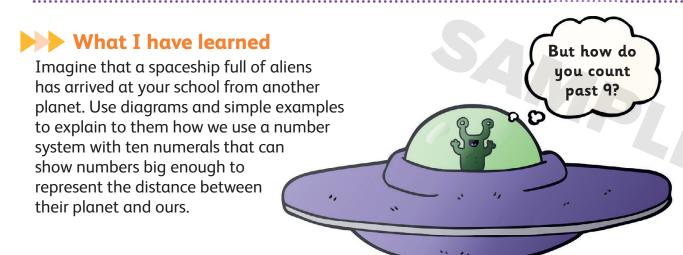
I am a 4-digit number.

I am even.

The digit in the ones place is 3 times larger than the digit in the thousands.

The digit in the tens place is 5 less than the digit in the ones place.

The digit in the hundreds place is 8 more than the digit in the tens place.

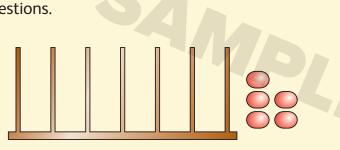

The sum of my digits is 18.

Which number am I?

Case 4

Calculate a value for each of the letters of the alphabet. Then use these values to help you crack the code and read the message below.

you crack the code and read the message below.					
	Α	the digit in the thousands place of 415 925		M 10 × 5 makes this product	
	С	the place value of the 7 in the number 24 718		N 1 quarter of 1 000	
	D	10 of these make 400		O the first even number	
	Е	the greαtest 1-digit number		the digit in the hundred thousands place in the number 4 352 129	
	F	the only digit that is not a natural or counting number		the number of digits in five thousand	
	G	the greatest 2-digit number		the smallest 3-digit number	
	н	the face value of the 1 in the number 1 million		5 of these make one hundred	
	I	the number of digits in the number 2 153 990		the number that multiplied by itself makes 100	
	K	the number of digits in half a million		if you divide 4 000 by ten, you get this	
	L	the digit in the thousands place in 1 982 571		Y half of 1 000	
ſ	4	2 40 (0 2 500	2 20	100 0 5 700 4	
	1	2 10 40 2 500	2 20	100 9 5 700 1	
[50	5 1 4 100 2	5	700 1 7 700 6 9 250	
				?	
	8	2 100 4 2 0	9 99	99 4 5 50 3 8 9 4	
				- !	


Practice questions

- 1 a Write the smallest possible 7-digit number you can using the digits 1, 5, 7 and 2.
 - **b** Now write the greatest possible 7-digit number using the same digits.
 - Use one of the numbers you made to explain the difference between face value, place value and value of a number.
 - **d** Use one of the numbers you made to show how we write a number in expanded form.
- 2 Explain in your own words what we mean by:
 - a standard form
 - b expanded form.
- 3 Give three examples of things that cost more than \$1 million.
- 4 Write the value of 6 in each number.
 - a 609 773
- **b** 94 639
- c 685 597

- d 4892306
- e 6 987 032
- 5 Draw a place value chart. Fill the numbers in on the chart.
 - **a** 4 533
- **b** 56 709
- 345 981

- d 9 882 431
- e 602
- f 44 320
- 6 Write this set of numbers in numerals, then order from smallest to largest.
 - eighty-two thousand, seven hundred, eighty-four
 - two hundred forty-seven thousand, four hundred, fifteen
 - six million, six hundred six thousand, eight hundred, fifty-five
 - four million, seven hundred ten thousand, three hundred, one
 - three million, seven hundred thousand, forty

- 7 Look at the abacus and answer the questions.
 - What is the largest number you can make using 5 beads?
 Draw your answer and write the number.
 - What is the smallest number you could make? Draw your answer and write the number.

Self check

	Check you can do this:	If you have difficulty, try this:
1	Write any 4-digit number. Give the value, place value and face value of each digit. Try it with this number: 5 847	Go to page 7 and revise what we mean by place value, face value and value.
2	Can you identify the value of numbers with 5, 6 or 7 digits? Try it with these numbers: 12 384 349 750 1 438 885	Go to page 10 and practise putting numbers into place value charts to identify the value of each digit.
3	Can you put numbers into expanded form? Try it with this number: 8 156 209	Go to page 9. Think about expanding each digit to show its full value and expressing it as an addition sum.
4	Give some examples of when we need to use 7-digit numbers. Think of two things we might buy that might have 7-digit prices.	Go back to pages 10 and 11 and refresh your memory!

Primary Mathematics

Make maths fun, attainable and relevant with a series specifically designed for Jamaica's National Standards Curriculum by an expert team of authors in consultation with Jamaican educators.

- Enter new topics with exciting unit openers and Starting point activities to determine prior knowledge and learning readiness.
- Develop analytical skills with features such as Maths detective and Real-world maths activities.
- Provide a solid foundation for learning and PEP preparation at Grade 4.
- Consolidate learning at the beginning and end of each chapter with objectives, What I have learned activities, Practice questions and Self-check reflection.

