ESSENTIAL

SQA EXAM PRACTICE

Exam Papers

∞ Ø

Practice Questions

QUESTIONS PAPERS

Practise 60+ questions covering every topic

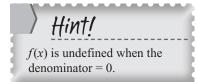
Complete 2 practice papers that mirror the real SQA exams

Robert Barclay

KEY AREA INDEX GRIDS

Practice Questions

Торіс	Practice Questions
Algebraic and trigonometric skills	
► Functions and graphs	1–9
▶ Quadratics	10–13
▶ Polynomials	14–16
▶ Logarithms and exponentials	17–22
► Trigonometric formulae	23–27
► The wave function	28–29
Geometric skills	
▶ Vectors	30–35
Calculus skills	
▶ Differentiation	36–39
▶ Applications of differentiation	40–44
▶ Integration	45–47
► Applications of integration	48–51
Algebraic and geometric skills	
► Recurrence relations	52–55
► The straight line	56–58
► The circle	59–62


Practice Papers

Topic	Practice Paper A Paper 1	Practice Paper A Paper 2	Practice Paper B Paper 1	Practice Paper B Paper 2
Algebraic and trigonometric skills	1.1			
► Functions and graphs	3, 8, 10, 14		2, 5, 9	2
▶ Quadratics	6	2		1, 11
► Polynomials		5(a)	15	
► Logarithms and exponentials	13, 15	8	8	10, 13
► Trigonometric formulae	18	11(a)	11, 13	15
► The wave function		9	16	
Geometric skills				
▶ Vectors	7, 17	6	4, 12	3, 5
Calculus skills				
▶ Differentiation	5		6	7
► Applications of differentiation	11, 12, 19	3	1	12, 14(a), (b)
▶ Integration	16	11(b)	7	
► Applications of integration		5(b), 10	14	9, 14(c)
Algebraic and geometric skills				
► Recurrence relations	2			8
► The straight line	4, 9	1	3	6(a), (b)
► The circle	1	4, 7	10	4, 6(c)

PRACTICE QUESTIONS

Algebraic and trigonometric skills

- 1 A function f is given by $f(x) = \frac{1}{5-x}$.
 - a) What value of x cannot be in the domain of f?
 - **b)** Find $f^{-1}(x)$.
- 2 A function *h* is given by $h(x) = \sqrt{4 x^2}$. Write down a suitable domain of *h*.
- 3 Functions f(x) = 4x and $g(x) = 3 \sin x$ are defined on suitable domains.
 - a) Evaluate $f\left(g\left(\frac{\pi}{6}\right)\right)$.
 - **b)** Find an expression for g(f(x)).
- 4 Functions $f(x) = \frac{1}{2}x \frac{3}{4}$ and $g(x) = 2x + \frac{3}{2}$ are defined on suitable domains.
 - a) Find an expression for f(g(x)).
 - b) What is the connection between the functions f and g?

1 2

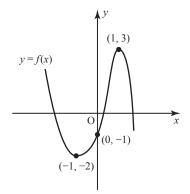
1

MARKS

1

3

2



Hint/

This table shows the transformations associated with different functions.

Transformation
Reflect in the <i>x</i> -axis
Reflect in the <i>y</i> -axis
Vertical translation a units up
Horizontal translation a units left
Vertical stretch by factor k
Horizontal compression by factor k
Reflect in $y = x$
Stationary points of $f(x)$ are roots of $f'(x)$

5 The diagram shows the graph of a function y = f(x). On separate diagrams sketch the graphs of:

- **a)** y = 3 f(x);
- **b)** y = 2f(x) 1;
- **c)** y = f'(x).

2

Copyright: Sample material

PRACTICE PAPER A

Paper 1 (non-calculator)

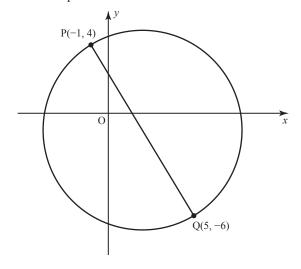
Duration: 1 hour 30 minutes

Total marks: 70

Attempt ALL questions.

You may NOT use a calculator.

Full credit will be given only to solutions which contain appropriate working.


State the units for your answer where appropriate.

Answers obtained by readings from scale drawings will not receive any credit.

P(-1, 4) and Q(5, -6) are points on the circumference of a circle, as shown in the diagram.

PQ is a diameter.

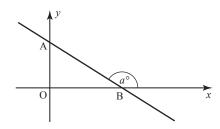
Find the equation of the circle.

A sequence is generated by the recurrence relation $u_{n+1} = au_n + b$, where -1 < a < 1 and

Given $u_1 = 28$ and $u_2 = 19$, find the values of a and b.

Find the limit of this sequence as $n \to \infty$.

3 Functions $f(x) = \frac{1}{x+2}$ and g(x) = 3x - 4 are defined on suitable domains.


Find an expression for h(x) where h(x) = f(g(x)).

What value of x cannot be in the domain of h?

Line AB has equation $\sqrt{3}x + y = 3$ as shown in the diagram.

The angle between AB and the positive direction of the x-axis is a° .

Calculate the value of *a*.

MARKS

3

4

2

2

1

Paper 2

Duration: 1 hour 45 minutes

Total marks: 80

Attempt ALL questions.

You may use a calculator.

Full credit will be given only to solutions which contain appropriate working.

State the units for your answer where appropriate.

Answers obtained by readings from scale drawings will not receive any credit.

MARKS 2

3

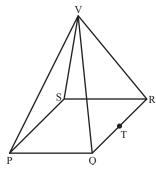
1

3

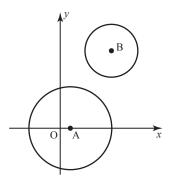
Solve $10 - 3x - x^2 < 0$, where x is a real number.

- 2 Functions $f(x) = \frac{1}{x+3}$ and $g(x) = \frac{1}{x} 3$ are defined on suitable domains.
 - a) Find an expression for f(g(x)). Give your answer in its simplest form.
- b) What is the connection between the functions f and g?
- 3 VPQRS is a pyramid with rectangular base PQRS.

T is the midpoint of QR.


Relative to some appropriate axes,

PQ represents
$$5i+5j-5k$$


PS represents 4i+4j+8k

 \overrightarrow{PV} represents $6\mathbf{i} + 11\mathbf{j} + 9\mathbf{k}$

Find VT in component form.

4 Two circles, with centres A and B, have equations $x^2 + y^2 - 4x - 60 = 0$ and $x^2 + y^2 - 20x - 30y + 300 = 0$, respectively.

a) Find the distance between the centres of the two circles.

Ques	stion	Answer	Marks	Commentary, hints and tips	Grade demand
13		Method 1	Method 1	Use laws of logarithms to	> C
		$\log_e y = \log_e b e^{ax}$	Take logs of both sides of equation.	rearrange $y = be^{ax}$ into the form $\log_e y = ax + \log_e b$.	
		$\log_e y = \log_e b + \log_e e^{ax}$ $\log_e y = ax + \log_e b$	Use $\log_e xy = \log_e x + \log_e y$ and $\log_e e^{ax} =$	This is the equation of the straight line with gradient a and y -intercept $(0, \log_e b)$.	
		$a = \frac{4.5}{3} = 1.5$	$ax \log_e e = ax.$ Find a .	Remember $\log_e b = y \Leftrightarrow b = e^y$.	
		$\log_e b = 4.5$	Find b.		
		$\Rightarrow b = e^{4.5} = 90$			
		Method 2 $\log_e y = 1.5x + 4.5$	Method 2 State linear equation.	The straight line has equation $\log_e y = mx + c$.	
		$y = e^{1.5x + 4.5}$	Convert to exponential form.	Use laws of logarithms to rearrange this equation into the	
		$y = e^{1.5x} \times e^{4.5}$	Use law of indices.	form $y = be^{ax}$. Remember $\log_e y = x \Leftrightarrow y = e^x$.	
		$y = 90e^{1.5x}$ $a = 1.5, b = 90$	Obtain result.		
		4 marks			
14	a)	a = v'(t) $= 5 - 2t$	Know to differentiate. Differentiate.	Acceleration is the rate of change of velocity with respect	> C
			Differentiate.	to time, i.e. $a = v'(t)$.	
	b)	5-2t<0	Set up inequality.		> C
		t > 2.5 After 2.5 seconds,	Solve inequality and interpret result.		
	c)	$s(t) = \int v(t) \mathrm{d}t$	Know to integrate.	Velocity is the rate of change of displacement with respect to time, i.e. $v = s'(t)$ so $s = \int v(t)dt$.	> C
		$= t + \frac{5}{2}t^2 - \frac{1}{3}t^3 + c$	Integrate.	Remember to add <i>c</i> , the constant of integration.	
		$s(0) = 2 \Rightarrow c = 2$ $\Rightarrow s(t) = t + \frac{5}{2}t^2 - \frac{1}{3}t^3 + 2$	Determine constant and state $s(t)$.	Substitute $s = 2$ and $t = 0$ into the result of the integration to find the value of c .	
1.5			7 marks	TT d d d d	
15		$2\cos^2\theta - 1 + \cos\theta = 0$ $2\cos^2\theta + \cos\theta - 1 = 0$	Use double angle formula. Rearrange and factorise.	Use the substitution $\cos 2\theta = 2\cos^2 \theta - 1$ to obtain	> C
		$(2\cos\theta - 1)(\cos\theta + 1) = 0$		an equation with terms in $\cos \theta$ only.	
		$\cos\theta = \frac{1}{2}, \cos\theta = -1$	Solve for $\cos \theta$.		
		$\theta = \frac{\pi}{3}, \frac{5\pi}{3}, \pi$	Solve for θ .	Use exact values to give the answers in terms of π .	