A HODDER EDUCATION PUBLICATION

Author Andrew Ginty

Contents

Introduction

Section 1 Level 2 Further Mathematics

1	Lim	iting value of a sequence	01
	1.1	Limiting value	01
2	Bin	omial expansion	04
	2.1	Pascal's triangle	04
3	Sim	ultaneous equations	08
	3.1	Simultaneous equations in three unknowns	e 08
4	Line	es and circles	13
	4.1	Pythagorean triples	13
	4.2	Dividing a line by a given ratio	14
	4.3	Equation of a circle	15
5	Fac	torising	18
	5.1	Common factors	18
	5.2	Quadratic expressions involving two letters	19
	5.3	Difference of two squares	19
	5.4	Factor theorem	20
6	Trig	jonometry	23
	6.1	Trigonometric equations	23
	6.2	The ambiguous case of the	
		sine rule	25
	6.3	Trigonometric identities	26
	6.4	Disguised quadratic equations	27
7	Exp	onential graphs and function	าร 29
	7.1	Exponential graphs	29
	7.2	Domain of a function	32
	7.3	Range of a function	32
	7.4	Multi-part functions	35

V	8	Mat	rices	38
		8.1	Introduction to matrices	38
		8.2	Multiplying a matrix by a scalar	39
1		8.3	Multiplying two or more matrices	39
1		8.4	The identity matrix	41
,		8.5	Transformations	42
4		8.6	Special transformations	43
4		8.7	Forming a transformation matrix	43
8		8.8	Combining transformations	45
••••	9	Cal	culus	48
8		9.1	Differentiation	48
3		9.2	Tangents and normal	51
		1.2	Tangents and normal	51
S		9.3	Increasing and decreasing functions	
3			•	
4		9.3	Increasing and decreasing functions	52
		9.3 9.4	Increasing and decreasing functions Second derivative	52 53
4		9.3 9.4 9.5	Increasing and decreasing functions Second derivative Stationary points	52 53 54

Section 2 Beyond Level 2 Further Mathematics

10	Extension: Limiting value of a	
	sequence	61
		•••••

10.1	Proof of $\frac{an+c}{bn+d} \rightarrow \frac{a}{b}$	61
10.2	Rational functions	61
10.3	Euler's number	63

11	Exte	ens	ior	1:	Bi	in	omia	il (ехр	ans	sior	า	64
	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••
		_				~							

	11.1	Factorial function	64
	11.2	Permutations and combinations	66
	11.3	Pascal's triangle	68
	11.4	Binomial distribution	74
	11.5	Trinomial expansions	76
	11.6	'Anagrams'	77
12	Exte	ension: Simultaneous	
	equa	ations	79
	12.1	Substitution	79
	12.2	Gaussian elimination	81

12.3 No solution or multiple solutions 88

13	Exte	ension: Lines and circles	93
	13.1	Pythagorean triples	93
	13.2	Proof of Pythagoras' theorem	94
	13.3	Fermat's Last Theorem	95
	13.4	Proof of the line division formula	96
	13.5	Proof of the circle equation	97
14	Exte	ension: Factorising	98
	14.1	Long division	98
	14.2	Grid method 1	102
	14.3	Grid method 2	104
	14.4	Remainder theorem	105
	14.5	Useful factorisations	107
	_	· · · · · · · · · · · · · · · · · · ·	
15	Exte	ension: Trigonometry	108
15	Exte 15.1	Proof of the sine rule	108
15		Proof of the sine rule	•••••
15	15.1	Proof of the sine rule Proof of the cosine rule	108
15	15.1 15.2	Proof of the sine rule Proof of the cosine rule Area of a triangle	108 108
15	15.1 15.2 15.3	Proof of the sine rule Proof of the cosine rule Area of a triangle	108 108 109
15	15.1 15.2 15.3 15.4	Proof of the sine rule Proof of the cosine rule Area of a triangle Extension of the sine rule	108 108 109 109
	15.1 15.2 15.3 15.4 15.5 15.6	Proof of the sine rule Proof of the cosine rule Area of a triangle Extension of the sine rule Radians	108 108 109 109 111
	15.1 15.2 15.3 15.4 15.5 15.6 Exte	Proof of the sine rule Proof of the cosine rule Area of a triangle Extension of the sine rule Radians Arc-length and sector area	108 108 109 109 111
	15.1 15.2 15.3 15.4 15.5 15.6 Exte	Proof of the sine rule Proof of the cosine rule Area of a triangle Extension of the sine rule Radians Arc-length and sector area	108 108 109 109 111 112
	15.1 15.2 15.3 15.4 15.5 15.6 Exte and 16.1	Proof of the sine rule Proof of the cosine rule Area of a triangle Extension of the sine rule Radians Arc-length and sector area ension: Exponential graphs functions	108 108 109 109 111 112 114
	15.1 15.2 15.3 15.4 15.5 15.6 Exte and 16.1	Proof of the sine rule Proof of the cosine rule Area of a triangle Extension of the sine rule Radians Arc-length and sector area ension: Exponential graphs functions	108 108 109 109 111 112 114

17	Exte	ension: Matrices	120	
	17.1	Adding and subtracting matrices	120	
	17.2	Multiplying matrices	121	
	17.3	Inverse matrices	122	
	17.4	Determination of a matrix	124	
	17.5	'Dividing' matrices	125	
	17.6	Transpose of a matrix	126	
	17.7	Determinant of a 3×3 matrix	127	
	17.8	3×3 inverse matrix	129	
	17.9	Simultaneous equations	130	
18 Extension: Calculus 1				
	18.1	Non-integer indices	134	
	18.2	Differentiation from		
		first principles	134	
	18.3	Gradient of $y = x^n$	137	
	18.4	Integration	138	
	18.5	Definite integrals	140	
Mix	ked Q	uestions	142	
Со	mmo	n command words		
use	ed in	questions	148	
Answers				

Introduction

Chapters 1 to 9 cover all the Further Mathematics topics that are not covered in the GCSE Mathematics specification. Chapters 10 to 18 are not assessed in the Level 2 Certificate in Further Mathematics, and they are for interest only.

Complete Chapter 1 before attempting this chapter

These latter chapters include proofs of the rules learned in Chapters 1 to 9, and extension material that learners may find interesting. Students who go on to study mathematics at A-Level or beyond will benefit from reading Chapters 10 to 18. Each of these chapters can be accessed once the corresponding chapter from 1 to 9 has been completed.

Different schools structure the teaching of GCSE Mathematics in different ways. For this reason, Chapters 1 to 9 are designed to be independent of each other so they can be studied in any order. If you have already completed GCSE Maths, you can access any of the chapters. If you have not yet completed GCSE Maths, then consider each of the diagnostic tests. If you score 100% on a test, then you can access the corresponding chapter. If you cannot complete a diagnostic test, then wait until you have completed the necessary topic(s) in your GCSE Maths lessons.

Each chapter is divided into short learning sections. Each section introduces the knowledge required, followed by worked examples:

Example 1.3 The *n*th term of a sequence is A_n where $A_n = \frac{5+2n^2}{n^3-6n+8}$

Write down the limiting value of A_n as $n \to \infty$

Solution

The expression could be rewritten as $\frac{0n^3 + 2n^2 + 5}{1n^3 - 6n + 8}$ The highest power of *n* is 3 So the limiting value is $\frac{0n^3}{1n^3} = 0$

Exercises are available for students to test their understanding of each section, with questions progressively increasing in difficulty.

The key points are summarised at the end of each section:

KEY POINTS

- Each term in the expansion $(a + b)^n$ is of the form Pa^qb^r
- P is from the nth row of Pascal's triangle. Learn the 3rd row of Pascal's triangle and then find the others by adding adjacent numbers.
- Note: You are not expected to know Pascal's triangle beyond the 5th row.
- The sum of the indices *q* and *r* is always *n*

Regular notes are included to provide extra explanation, exam advice and points of interest:

PS This indicates a problem-solving question. These questions will sometimes involve more than one topic area.

At the end of this resource, you will find a mixed exercise with questions to help you practise the skills learned in Chapters 1 to 9.

Limiting value of a sequence

DIAGNOSTIC TEST

The online diagnostic test for this topic is at this link:

When you score 100% on the diagnostic test, you will be ready to complete this chapter.

Objective

In this section, you will learn how to:

➔ find the limiting value of a sequence.

1 Limiting value

As some sequences progress, the terms gradually approach a particular value, called a **limit** or **limiting value**, but never reach it.

In this section you will learn how to find the limit of such a sequence.

For example, the sequence given by the formula nth term $= \frac{n+5}{2n-1}$ has the terms $6, \frac{7}{3}, \frac{8}{5}, \frac{9}{7}, \frac{10}{9}, 1, \frac{12}{13}, \frac{13}{15}, \frac{14}{17}, \frac{15}{19}, \dots$

Consider the *n*th term as *n* gets very large:

100th term = $\frac{105}{199}$ = 0.52763819 (8 d.p.) 1000th term = $\frac{1005}{1999}$ = 0.50275138 (8 d.p.)

1999 - 0.502 75156 (8 d.p.)

 $1\,000\,000$ th term = $\frac{1000\,005}{1999\,999}$ = 0.500 00275(8 d.p.)

Try some even larger values of n

As n increases, the nth term of the sequence gets closer to 0.5

As *n* approaches infinity, 0.5 is the limiting value of the sequence given by *n*th term = $\frac{n+5}{2n-1}$

This can be written as

$$\frac{n+5}{2n-1} \to 0.5 \quad \text{as} \quad n \to \infty$$

We often use an arrow to replace the word 'approaches'.

It would be tedious (and unreliable) to substitute very large numbers into an *n*th term formula in order to work out the limiting value of the sequence.

KEY POINT

If the *n*th term of a sequence is in the form of a fraction, the limiting value can be calculated by dividing the coefficients of the highest power of *n* All other coefficients can be ignored.

Extension

For an explanation of this rule, see the EXTENSION resources.

Example 1.1	Write down the limiting value of $\frac{2n-3}{7n+1}$ as $n \to \infty$
	Solution
	The highest power of <i>n</i> is 1, so the limiting value is $\frac{2n^1}{7n^1} = \frac{2}{7}$

Example 1.2 The *n*th term of a sequence is $\frac{7-8n^2}{5n^2+n-2}$

Write down the limiting value of the sequence as $n \rightarrow \infty$

Solution

The highest power of *n* is 2, so the limiting value is $\frac{-8n^2}{5n^2} = -\frac{8}{5}$ (or -1.6)

Example 1.3 The *n*th term of a sequence is A_n where $A_n = \frac{5+2n^2}{n^3-6n+8}$ Write down the limiting value of A_n as $n \to \infty$ **Solution** The highest power of *n* is 3 The expression could be rewritten as $\frac{0n^3+2n^2+5}{1n^3-6n+8}$ So the limiting value is $\frac{0n^3}{1n^3} = 0$

2

Exercise 1A (1) The *n*th term of a sequence is $\frac{4n-1}{3n-5}$ (a) Find the 5th term of the sequence. (b) Write down the limiting value of the sequence as $n \to \infty$ (2) A sequence is given by $u_n = \frac{3n+8}{2+5n}$ where u_n is the *n*th term. (a) Given that $u_k = 1$, find the value of k (b) Write down the limiting value of the sequence as $n \to \infty$ (3) The *n*th term of a sequence is $\frac{n^2 - 3n + 5}{3n^2 + n - 7}$ (a) Find the 1st, 2nd and 3rd terms of the sequence. (b) Write down its limiting value as $n \to \infty$ (4) The *n*th term of a sequence is $\frac{3+2n^4+7n^2}{8+5n-3n^4}$ Write down its limiting value as $n \to \infty$ (5) A sequence is given by $u_n = \frac{2-n^3}{7n^4 + n^2}$ where u_n is the *n*th term. (a) Find the values of u_1 and u_2 (b) Write down the limiting value of u_n as $n \to \infty$ PS Calculate the limiting value of t_n as $n \to \infty$ (7) A sequence is given by *n*th term $= \frac{an^2 + 5n - 1}{4n^2 - 3n + c}$ where *a* and *c* are constants. PS The 1st term of the sequence is $\frac{2}{3}$ and the limiting value as $n \to \infty$ is $\frac{1}{2}$ Calculate the sum of the first two terms of the sequence. (8) The *n*th terms of two different sequences are given by PS $s_n = \frac{an-1}{3n+5}$ and $t_n = \frac{bn-3}{6n-2}$ where *a* and *b* are constants. As $n \to \infty$ the two sequences have the same limiting value. Also, $t_1 = 2s_1$ Calculate the value of t_2

Binomial expansion

DIAGNOSTIC TEST

The online diagnostic test for this topic is at this link:

When you score 100% on the diagnostic test, you will be ready to complete this chapter.

Objectives

In this section, you will learn about:

- \rightarrow expansions of $(a + b)^n$
- → individual terms in the expansion of $(a + b)^n$

1 Pascal's triangle

Consider the first few simplified expansions of $(a + b)^n$ where *n* is a non-negative integer:

 $(a + b)^{0} = 1$ $(a + b)^{1} = a + b$ $(a + b)^{2} = a^{2} + 2ab + b^{2}$ $(a + b)^{3} = a^{3} + 3a^{2}b + 3ab^{2} + b^{3}$ $(a + b)^{4} = a^{4} + 4a^{3}b + 6a^{2}b^{2} + 4ab^{3} + b^{4}$ $(a + b)^{5} = a^{5} + 5a^{4}b + 10a^{3}b^{2} + 10a^{2}b^{3} + 5ab^{4} + b^{5}$

You need to remember the above expansions.

This may seem a daunting task, but it is easy once you spot the patterns.

$(a + b)^0 =$	$1a^0b^0$
$(a + b)^1 =$	$1a^{1}b^{0} + 1a^{0}b^{1}$
$(a + b)^2 =$	$1a^2b^0 + 2a^1b^1 + 1a^0b^2$
$(a + b)^3 =$	$1a^3b^0 + 3a^2b^1 + 3a^1b^2 + 1a^0b^3$
$(a + b)^4 =$	$1a^4b^0 + 4a^3b^1 + 6a^2b^2 + 4a^1b^3 + 1a^0b^4$
$(a + b)^5 =$	$1a^5b^0 + 5a^4b^1 + 10a^3b^2 + 10a^2b^3 + 5a^1b^4 + 1a^0b^5$

Each term in the expansion of $(a + b)^n$ is in the form $Pa^q b^r$ where q and r are integers such that q + r = n

Note

Check these for yourself by expanding (a + b)(a + b)Then multiply by (a + b) to find $(a + b)^3$ Continue by multiplying each expansion by (a + b)

In each expansion, reading from left to right, the powers of a decrease while the powers of b increase.

The first and last numbers in each row are always 1

The other numbers in each row are the sum of two numbers from the row above. For example, the 10 in the 5th row is the sum of 4 and 6 in the 4th row:

Hint: Learn the 3rd row of Pascal's triangle. Find the subsequent rows by adding adjacent numbers of the previous row. Remember that the second half of each row is the same as the first half reversed.

6

Example 2.1

- (a) Write down the simplified expansion of $(a + b)^4$
- (b) Hence write down the simplified expansion of $(1 + x)^4$

Solut	tion			he three	
(a)	$(a+b)^4 = 1a^4b^0 + 4a^3b^1 + 6a^2b^2 + 4a^1b^3 + 1a^0b^4$	separ		ich term ':	
	$= a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^4$	1 4	a^4 a^3	$b^0 \ b^1$	
(b)	In the expansion of $(a + b)^4$ replace <i>a</i> with 1 and <i>b</i> with <i>x</i>	6 4	a^2 a^1	b^2 b^3	
	$(1 + x)^{4} = 1^{4} + 4 \times 1^{3} \times x + 6 \times 1^{2} \times x^{2} + 4 \times 1 \times x^{3}$	$\frac{1}{+x^4}$	a^0	b^4	
	$(1+x)^{2} = 1 + 1 + 1 + 1 + 1 + 2 + 1 + 2 + 1 + 2 + 1 + 2 + 2$	1 11			

Note

The instruction 'write down' suggests that very little work is required. However, you may show working lines if you prefer.

1 Pascal's triangle

Example	2	
---------	---	--

Expand and simplify $(3p-2)^5$

Note $(3p-2)^5$ is expanded as $(3p+(-2))^5$

Solution

Calculate each term separately:

 $1 (3p)^{5}(-2)^{0} = 1 \times 243p^{5} \times 1 = 243p^{5}$ $5 (3p)^{4}(-2)^{1} = 5 \times 81p^{4} \times -2 = -810p^{4}$ $10 (3p)^{3}(-2)^{2} = 10 \times 27p^{3} \times 4 = 1080p^{3}$ $10 (3p)^{2}(-2)^{3} = 10 \times 9p^{2} \times -8 = -720p^{2}$ $5 (3p)^{1}(-2)^{4} = 5 \times 3p \times 16 = 240p$ $1 (3p)^{0}(-2)^{5} = 1 \times 1 \times -32 = -32$ So $(3p-2)^{5} = 243p^{5} - 810p^{4} + 1080p^{3} - 720p^{2} + 240p - 32$

Example 2.3

Find the coefficient of x^4 in the expansion of $(2x - 7)^6$

Solution

Each term in the expansion is of the form $P(2x)^{q}(-7)^{r}$ <u>Step 1</u>: Identify the power of 2xThe question has specified the x^4 term, so $(2x)^4$ is required. <u>Step 2</u>: Identify the power of -76 - 4 = 2The sum of the powers in each term is 6, so $(-7)^2$ is required. Step 3: Identify the binomial coefficient. The 5th row of Pascal's triangle is 1, 5, 10, 10, 5, 1 So the 6th row is 1, 6, 15, 20, 15, 6, 1 ← The 1st number of any row is 1The 2nd number of the 6th row is 6 The 3rd number is 5 + 10 (from the 5th row) The 4th number is 10 + 10 (from the 5th row) The last three are the same as the first three reversed. Find the coefficient linked with x^4 1 6 15 20 6 1 15 x^0 x^1 x^2 x^3 x^6 x^5 The x^4 term is $15(2x)^4(-7)^2$ $=15 \times 16x^{4} \times 49$ $=11760x^{4}$ The coefficient of x^4 is 11760

KEY POINTS

- Each term in the expansion of $(a + b)^n$ is of the form Pa^qb^r
- *P* is from the *n*th row of Pascal's triangle. Learn the 3rd row of Pascal's triangle and then find the others by adding adjacent numbers.
- Note: You are not expected to know Pascal's triangle beyond the 5th row.
- The sum of the indices q and r is always n

Extension

For more information on Pascal's triangle and how to use it, see the EXTENSION resources.

Exercise 2A	 (1) (a) Write down the simplified expansion of (a + b)³ (b) Hence write down the simplified expansion of (x + 1)³
	(2) Expand and simplify $(x + 2)^4$
	(3) Expand and simplify $(2m-1)^5$
	(4) Expand and simplify $(5p + 2q)^3$
	(5) Find the coefficient of x^3 in the expansion of $(3x - 5)^4$
	(6) Simplify $(n+3)^4 - n(n-1)^3$
PS	(7) In the expansion of $(ax + 3)^5$ the coefficient of x^2 is 2430 Find the possible values of <i>a</i>
PS	(a) In the expansion of $(a + 2x)^5$ the coefficient of x^2 is double the coefficient of x^4
	Given that a is positive, find its value.
PS	(9) Find the coefficient of $x^2 \gamma^4$ in the expansion of $(3x - 5\gamma)^6$
PS	(1) Given that <i>n</i> is a positive integer, show that $(n + 3)^3 - n^3$ is a multiple of 9

Simultaneous equations

DIAGNOSTIC TEST

The online diagnostic test for this topic is at this link:

When you score 100% on the diagnostic test, you will be ready to complete this chapter.

Objective

In this section, you will learn how to:

→ solve simultaneous equations in three unknowns.

1 Simultaneous equations in three unknowns

In your GCSE Maths studies you will have learned how to solve simultaneous equation in two unknowns.

In this section you will learn how to solve simultaneous equations in three unknowns.

Follow these steps:

- Step 1 Eliminate one of the unknowns by combining a pair of equations.
- Step 2 Eliminate the same unknown by combining another pair of equations.
- Step 3 Solve the resulting pair of simultaneous equations in two unknowns.

Step 4 Substitute the answers from Step 3 into one of the original equations to find the value of the third unknown.

Extension

For alternative methods see the EXTENSION resources.

Example 3.1

Solve these simultaneous equations:

2x + 3y + z = 83x - y + z = 21x + 4y + z = 1

Note

In this example, the coefficients of z are all the same, so zcan be eliminated by subtracting pairs of equations.

Solution

Note

equations.

Always check your answer by substituting it back into the original Subtracting the first two equations gives an equation in x and y

(2x + 3y + z) - (3x - y + z) = 8 - 21 $\implies -x + 4y = -13$

Subtracting the second and third equations gives another equation in x and y

(3x - y + z) - (x + 4y + z) = 21 - 1 $\Rightarrow 2x - 5y = 20$

You can then solve this pair of simultaneous equations in two unknowns:

	$-x + 4\gamma = -13$	1				
	2x - 5y = 20	2				
(1) × 2:	-2x + 8y = -26	3				
(2) × 1:	2x - 5y = 20	4				
3+4:	8y + (-5y) = -26 + 20					
	\Rightarrow $3\gamma = -6$					
	\Rightarrow $\gamma = -2$					
Substituting $\gamma = -2$ into equation (1) gives $-x + 4 \times (-2) = -13$						
			\Rightarrow -x	c - 8 = -13		
			\Rightarrow	-x = -5		
			\Rightarrow	x = 5		
Finally, substitute $x = 5$ and $y = -2$ into $2x + 3y + z = 8$						
$2 \times 5 + 3 \times (-2) + z = 8$						
			\Rightarrow 4+	<i>z</i> = 8		
			$\Rightarrow z =$	4		
The fina	al solution is $x = 5$, y	=-2, z=4				

Exercise 3A (1) Solve these sets of simultaneous equations by first eliminating x(b) 3x + 2y + z = 10(a) x + 2y + 3z = 17 $x + \gamma + 2z = 12$ $3x + \gamma + 3z = 16$ x + 3y + z = 103x + 4y + 2z = 23② Solve these sets of simultaneous equations by first eliminating y(a) x + 2y + 3z = 12(b) 2x - 3y + z = -12x + 2y - z = 23x + 3y - 2z = 33x + 2y - 2z = 44x + 3y - z = 7(3) Solve these simultaneous equations. (a) 2x + 3y + z = -6(b) x - 4y + 2z = 3 $x - 2\gamma - z = -3$ 2x + 4y - z = -75x - 4y + 3z = -43x - y - z = -10

In Example 3.1, the coefficients of the z term were all the same, making the initial step easy.

In the next example, the three equations do not have any terms with matching coefficients. In this case it is important to set out your work clearly and systematically.

Solve these simultaneous equations: 5x + y - 4z = -13 $3x - 2y + 2z = 15$ $2x + 3y - 5z = -24$			
Solution $5x + y - 4z = -13 (1)$ $3x - 2y + 2z = 15 (2)$ $2x + 3y - 5z = -24 (3)$ $(1) \times 2: 10x + 2y - 8z = -26 (4)$ $(2) \times 1: 3x - 2y + 2z = 15 (5)$ $(4) + (5): 13x - 6z = -11 (6)$ $(1) \times 3: 15x + 3y - 12z = -39 (7)$ $(3) \times 1: 2x + 3y = 5z = -24 (8)$ $(7) - (8): 13x - 7z = -15 (9)$			
$ (3) \times 1: 2x + 3y - 5z = -24 (8) $ $ (6) - (9): -6z - (-7z) = -11 - (-15) \Rightarrow z = 4 $ Substitute $z = 4$ into (6): $13x - 6 \times 4 = -11 \Rightarrow 13x = 13 \Rightarrow x = 1$ Substitute $x = 1$ and $z = 4$ into (1): $5 \times 1 + y - 4 \times 4 = -13 \Rightarrow y = -2$ The solution is $x = 1, y = -2, z = 4$			
Note In the above example, y was eliminated first, but any letter could have been chosen. The equations could be combined in several different ways to eliminate a letter. Try to solve the example by first eliminating x or z instead.			
Find the <i>n</i> th term of the quadratic sequence 2, 2, 4, 8, 14, Solution There are various methods for finding the <i>n</i> th term of a quadratic sequence. The method shown here uses three simultaneous equations in three unknowns. Let <i>n</i> th term = $an^2 + bn + c$ \leftarrow The question states that the sequence is quadratic. So, we can assume the <i>n</i> th term is of the form $an^2 + bn + c$ where <i>a</i> , <i>b</i> and <i>c</i> are constants to be found.			

AQA Level 2

Certificate in Further Mathematics SELF-STUDY

This eBook is designed for students who are studying the course independently, or who require additional stretch beyond that supplied by the textbook. Focusing on the topics that go beyond GCSE, it is the perfect companion for self-study. Online diagnostic tests for each topic help students to target their studies, while comprehensive extension chapters provide ideal preparation for A level Maths and Further Maths.

- Build your understanding of mathematics with discussion points, thought-provoking activities and rigorous exercise questions.
- Develop your problem-solving skills and learn to use mathematical arguments with step-by-step worked examples.
- Check your understanding and target your study with an online diagnostic test at the start of each chapter.
- Focus on more advanced maths and prepare for A level with extension content.
- Can be used alongside the textbook and practice book

Author

Andrew Ginty has taught mathematics at Key Stages 3, 4 & 5 for over 30 years. He has extensive experience as an examiner and lead examiner at GCSE and A level.

Our AQA Level 2 Certificate in Further Mathematics textbook covers the entire course and is perfect for classroom use.

This title has been approved by AQA

This title is available as an eBook with learning support.

Visit hachettelearning.com/boost-learning to find out more.

Visit us at hachettelearning.com

