# KEY STAGE 3 Mastering Mathematics Second Edition

800A

Sophie Goldie Luke Robinson Heather Davis Series Editor: Steve Cavill





| Contents                                   |    |
|--------------------------------------------|----|
| How to use this book                       | vi |
| Powers and indices                         | 1  |
| 1.1 Index notation                         | 2  |
| 1.2 Standard form                          | 9  |
| 1.3 Prime factorisation                    | 14 |
| Review exercise                            | 19 |
| 2 Fractions                                | 21 |
| 2.1 Fractions review                       | 21 |
| 2.2 Mixed numbers                          | 29 |
| 2.3 Multiplying and dividing mixed numbers | 34 |
| • Review exercise                          | 38 |
| 3 Accuracy                                 | 41 |
| 3.1 Significant figures                    | 42 |
| 3.2 Approximating                          | 45 |
| 3.3 Accuracy                               | 48 |
| Review exercise                            | 52 |
| Progress review 1                          | 54 |
| 4 Percentages                              | 58 |
| 4.1 Percentages review                     | 58 |
| 4.2 Using multipliers                      | 64 |
| 4.3 Reverse percentages                    | 69 |
| • Review exercise                          | 75 |
| 5 Ratio and proportion                     | 78 |
| 5.1 Ratio and proportion review            | 79 |
| 5.2 Direct proportion                      | 84 |
| 5.3 Inverse proportion                     | 89 |
| • Review exercise                          | 94 |
| Progress review 2                          | 97 |

| 6   | Using measures                                         | 101 |
|-----|--------------------------------------------------------|-----|
|     | 6.2 Density                                            | 101 |
|     | 6.3 Converting between metric units of area and volume | 115 |
| •   | Review exercise                                        | 115 |
|     |                                                        | 120 |
| 7   | Equations, expressions and formulas                    | 123 |
|     | 7.1 Solving equations review                           | 124 |
|     | 7.2 Using the laws of indices                          | 131 |
|     | 7.3 Expanding brackets                                 | 134 |
|     | 7.4 Formulas                                           | 140 |
| •   | Review exercise                                        | 147 |
|     | Progress review 3                                      | 150 |
| 8   | Graphs                                                 | 153 |
|     | 8.1 The gradient of a line                             | 155 |
|     | 8.2 The equation of a straight line                    | 161 |
|     | 8.3 Plotting quadratic graphs                          | 168 |
| ٠   | Review exercise                                        | 174 |
| 9   | Real-life graphs                                       | 177 |
|     | 9.1 Distance–time graphs                               | 178 |
|     | 9.2 Reading from real-life graphs                      | 186 |
| •   | Review exercise                                        | 194 |
| 10) | Transformations                                        | 199 |
|     | 10.1 Reflection and translation                        | 199 |
|     | 10.2 Rotation                                          | 210 |
|     | 10.3 Enlargement                                       | 217 |
|     | Review exercise                                        | 224 |
|     | Progress review 4                                      | 229 |
| 11) | Prisms and cylinders                                   | 234 |
|     | 11.1 Volume of a prism                                 | 234 |
|     | 11.2 Volume of a cylinder                              | 240 |
|     | 11.3 Surface area                                      | 245 |
| •   | Review exercise                                        | 252 |
|     |                                                        |     |

| 12) | Constructions                   | 255 |
|-----|---------------------------------|-----|
|     | 12.1 Constructions              | 256 |
|     | 12.2 Further constructions      | 261 |
|     | 12.3 Congruent triangles        | 268 |
| •   | Review exercise                 | 274 |
| 13  | Trigonometry                    | 277 |
|     | 13.1 Similarity                 | 278 |
|     | 13.2 Finding a missing side     | 283 |
|     | 13.3 Finding a missing angle    | 291 |
|     | 13.4 Solving problems           | 294 |
| •   | Review exercise                 | 298 |
|     | Progress review 5               | 301 |
| 14  | Working with data               | 306 |
|     | 14.1 Grouped frequency tables   | 307 |
|     | 14.2 Displaying grouped data    | 315 |
|     | 14.3 Scatter diagrams           | 324 |
| •   | Review exercise                 | 332 |
| 15) | Probability                     | 338 |
| Í   | 15.1 Probability space diagrams | 338 |
|     | 15.2 Venn diagrams              | 345 |
|     | 15.3 Combined events            | 351 |
| ٠   | Review exercise                 | 359 |
|     | Progress review 6               | 364 |
|     | Glossary                        | 370 |

Contents



# **Powers and indices**

# Coming up...

- Index notation and the laws of indices
- Using standard form

- Writing integers as a product of prime factors
- Finding the least common multiple and highest common factor of two numbers

#### The tower of Hanoi

This puzzle is called 'The tower of Hanoi'.

You have 3 poles and 4 coloured discs of different sizes set on one of the poles.



The aim is to move the discs onto one of the other poles.



There are two rules for moving the discs.





Rule 2: You must never put a larger disc on top of a smaller disc



1 Make your own Tower of Hanoi.

- Cut out 4 circles of card of different diameters to use as your discs.
- Make 3 large square bases for your towers.
- > Put the circles on one of your towers in order of size.
- 2 What is the smallest number of moves needed to move all your discs to another tower?
- 3 Investigate further for different number of discs.

Find a rule for the smallest number of moves, *m*, needed to move *d* discs from one tower to another.

# 1.1 Index notation

## Skill checker

Make a copy of this cross-number and then solve the clues.

| Across                                      | Down                                      |
|---------------------------------------------|-------------------------------------------|
| <b>1</b> 7 <sup>3</sup> - 5 <sup>3</sup>    | <b>1</b> 5 <sup>2</sup>                   |
| <b>4</b> 3 <sup>2</sup> + 4 <sup>2</sup>    | <b>2</b> 10 <sup>3</sup> - 5 <sup>3</sup> |
| <b>5</b> $2 \times 3^{3}$                   | <b>3</b> √256                             |
| <b>6</b> $4^2 \times \sqrt{36}$             | <b>4</b> $6^2 - \sqrt{100}$               |
| <b>10</b> $2 \times \sqrt{100}$             | <b>7</b> $3 \times 6^{3}$                 |
| <b>11</b> $\frac{5^2 \times 4^3}{\sqrt{4}}$ | <b>8</b> $\frac{\sqrt{10000}}{2}$         |
|                                             | <b>9</b> $\frac{6^3}{2^3}$                |
|                                             | <b>10</b> $5 \times 2^2$                  |



#### **Using indices**



The next examples show you how to multiply and divide numbers written using index notation.

#### Worked example

Write  $3^5 \times 3^4$  as a single power of 3.

#### **Solution**



 $= (3 \times 3 \times 3 \times 3 \times 3) \times (3 \times 3 \times 3 \times 3) \leftarrow$ 

 $= 3^9$  The powers have been added 5 + 4 = 9.

#### have been added 5 + 4 = 9.

#### Worked example

Write  $3^6 \div 3^4$  as a single power of 3.

#### **Solution**

$$3^{6} \div 3^{4} = \frac{3^{6}}{3^{4}}$$
It is easier to write this as a fraction.
$$= \frac{3 \times 3 \times \cancel{3} \times \cancel{3} \times \cancel{3} \times \cancel{3}}{\cancel{3} \times \cancel{3} \times \cancel{3} \times \cancel{3}}$$
If you multiply by 3 and then divide by 3 it cancels out, so 4 of the 3s cancel from the top and bottom.
$$= 3 \times 3$$

$$= 3^{2}$$
The powers have been subtracted 6 - 4 = 2.

In the examples the base was 3, but the same would be true for any base.

Here are the rules for multiplying and dividing powers.

$$a^m \times a^n = a^{m+n} \qquad \qquad a^m \div a^n = a^{m-n}$$

For example,  $9^3 \times 9^8 = 9^{3+8} = 9^{11}$ 

and 
$$\frac{4^{12}}{4^7}$$
 or  $4^{12} \div 4^7$  is  $4^{12-7} = 4^5$ 

Sometimes powers involve brackets like in this next example.

#### Worked example

Write  $(3^2)^4$  as a single power of 3.

# Solution $(3^{2})^{4} \text{ means } \underbrace{(3^{2}) \times (3^{2}) \times (3^{2}) \times (3^{2})}_{4 \text{ times}}$ So $(3^{2}) \times (3^{2}) \times (3^{2}) \times (3^{2}) \times (3 \times 3) \times ($

(3<sup>2</sup>)<sup>4</sup> is sometimes called a power of a power. Again, the example would have worked for any base, not just 3. Here is the rule for a power of a power.

 $[a^m]^n = a^{m \times n}$ 

For example,  $(11^4)^5 = 11^{4 \times 5} = 11^{20}$ 

#### **Copyright: Sample material**

Take care! The bases must be the same - you can't combine powers if the bases are different. There is no way to simplify  $3^7 \times 5^4$  any further.

There are 5 threes multiplied together multiplied by 4 threes

multiplied together which makes 9 threes multiplied together.





Carry on the table for the numbers up to 32.

6

7

8

Can all numbers be written using powers of 2?

**d** The table in part **c** is used to write numbers in **binary**.

In binary, 7 is written as  $111 \mbox{ and } 8 \mbox{ is } 1000.$ 

Convert these binary numbers back to ordinary numbers.

1

- i 100000 ii 101010
- iii 1101011 iv 1000000

Each binary digit is called a 'bit'. The number 10000000 uses 8 bits, and 8 bits is called a byte. A kilobyte is 1024 bytes and a megabyte is roughly 1 million bytes. Binary numbers are used in computers to store information. Binary is a very powerful tool as data can be represented as strings of 0s and 1s which are represented as 'on/off' signals.

e Find out more about binary numbers and how they are used in computing.

1

1

0

1

1

0

0

0

1 🗲

7 = 4 + 2 + 1

- Can every number be represented as a binary number?
  - How do you think text is converted to binary?

#### Powers of 1 and 0

|   | Act | tivity                                    | ••••   |                                  |     |                                    |
|---|-----|-------------------------------------------|--------|----------------------------------|-----|------------------------------------|
| 1 | Con | nplete these.                             |        |                                  |     |                                    |
| • | а   | Use your calculator to work out           |        |                                  |     |                                    |
| : |     | i $3^7 \div 3^6$                          | ii     | $4^8 \div 4^7$                   | iii | $9^{11} \div 9^{10}$               |
| • | b   | Use the laws of indices to write these    | as a s | single power.                    |     |                                    |
|   |     | <b>i</b> $3^7 \div 3^6 = 3^{}$            | ii     | $4^8 \div 4^7 = 4^{\Box}$        | iii | $9^{11} \div 9^{10} = 9^{\square}$ |
|   | С   | What do you notice?                       |        |                                  |     |                                    |
| • |     | Write down the value of 56 <sup>1</sup> . |        |                                  |     |                                    |
| 2 | Con | nplete these.                             |        |                                  |     |                                    |
| • | а   | Use your calculator to work out           |        |                                  |     |                                    |
| • |     | i $2^9 \div 2^9$                          | ii     | $5^8 \div 5^8$                   | iii | $19^{3} \div 19^{3}$               |
| • | b   | Use the laws of indices to write these    | as a s | single power.                    |     |                                    |
|   |     | $i \qquad 2^9 \div 2^9 = 2^{\square}$     | ii     | $5^{8} \div 5^{8} = 5^{\square}$ | iii | $19^3 \div 19^3 = 19^{-1}$         |
| • | С   | What do you notice?                       |        |                                  |     |                                    |
|   |     | Write down the value of 56°.              |        |                                  |     |                                    |

In the activity you found that

• any number to the power 1 is itself

• any number divided by itself is 1.

Using indices these are written as

 $a^1 = a$   $a^0 = 1$ 

# **Negative powers**

Look at this pattern.

$$2^{3} = 2 \times 2 \times 2 = 8 \Rightarrow 2$$
  

$$2^{2} = 2 \times 2 = 4 \Rightarrow 2$$
  

$$2^{1} = 2 \Rightarrow 2$$
  

$$2^{0} = 1 \Rightarrow 2$$
  

$$2^{-1} = \frac{1}{2^{1}} = \frac{1}{2} \Rightarrow 2$$
  

$$2^{-2} = \frac{1}{2^{2}} = \frac{1}{4} \Rightarrow 2$$
  

$$2^{-3} = \frac{1}{2^{3}} = \frac{1}{8} \Rightarrow 2$$

You can carry on the pattern so  $2^{-8} = \frac{1}{2^8}$  and  $2^{-n} = \frac{1}{2^n}$ You could have used any base so you can say

 $a^{-n} = \frac{1}{a^n}$  (A negative power means '1 over'.



# Roots







#### Worked example

Calculate

- a  $5^4 + 4^5$
- **b** <sup>5</sup>√343 <sup>4</sup>√64

#### **Solution**

**a**  $5^4 + 4^5 = 625 + 1024$ = 1649 **b**  $\sqrt[5]{243} - \sqrt[6]{64} = 3 - 2$ = 1 Watch out! You can't combine sums and differences into a single power because the base number is different, so you just need to use your calculator to work these out.

# 1.1 Now try these

| Write each expression as a power of 2.<br>a $2 \times 2 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1) Write each expression as a power of 2.<br>a $2 \times 2 \times 2 \times 2$<br>c $2 \times 2 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                        | questions                                                                                                |                                                                    |             |                                       |           |                          |         |                                         |                                   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-------------|---------------------------------------|-----------|--------------------------|---------|-----------------------------------------|-----------------------------------|
| a $2 \times 2 \times 2 \times 2$<br>b $2 \times 2 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | a $2 \times 2 \times 2 \times 2$<br>c $2 \times 2 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1 Write e                                                                                                                                              | ich expression as                                                                                        | a power of 2.                                                      |             |                                       |           |                          |         |                                         |                                   |
| c $2 \times 2 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | c $2 \times 2 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>a</b> 2                                                                                                                                             | < 2 × 2 × 2                                                                                              |                                                                    |             |                                       | Ь         | $2 \times 2 \times 2 >$  | < 2 × 3 | $2 \times 2 \times 2$                   |                                   |
| Write each expression as a single power. a $7 \times 7 \times 7$ b $5 \times 5 \times 5 \times 5 \times 5$ c $14 \times 14 \times 14 \times 14 \times 14 \times 14 \times 14$ d $12 \times 12 \times 12 \times 12 \times 12 \times 12 \times 12$ a $8 \times 8 \times 8 \times 8 \times 8 \times 8$ f $33 \times 33 \times 33 \times 33 \times 33 \times 33 \times 33 \times 33$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <b>2</b> Write each expression as a single power. <b>a</b> $7 \times 7 \times 7$ <b>b</b> $5 \times 5 \times 5 \times 5 \times 5$ <b>c</b> $14 \times 14 \times 14 \times 14 \times 14 \times 14$ <b>d</b> $12 \times 12 \times 12 \times 12 \times 12 \times 12 \times 12$ <b>e</b> $8 \times 8 \times 8 \times 8 \times 8 \times 8$ <b>f</b> $33 \times 33 \times 33 \times 33 \times 33 \times 33 \times 33 \times 33$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <b>c</b> 2                                                                                                                                             | < 2 × 2 × 2 × 2 × 2 >                                                                                    | × 2 × 2 × 2 ×                                                      | < 2 ×       | $2 \times 2 \times 2$                 | d         | 2 × 2 × 2 >              | < 2 × 3 | 2 × 2                                   |                                   |
| a $7 \times 7 \times 7$<br>b $5 \times 5 \times 5 \times 5 \times 5$<br>c $14 \times 14 \times 14 \times 14 \times 14 \times 14 \times 14$<br>d $12 \times 12 \times 12 \times 12 \times 12 \times 12 \times 12$<br>e $8 \times 8 \times 8 \times 8 \times 8 \times 8$<br>f $33 \times 33 \times 33 \times 33 \times 33 \times 33 \times 33 \times 33$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | a $7 \times 7 \times 7$<br>b $5 \times 5 \times 5 \times 5 \times 5$<br>c $14 \times 14 \times 14 \times 14 \times 14 \times 14$<br>d $12 \times 12 \times 12 \times 12 \times 12 \times 12 \times 12$<br>e $8 \times 8 \times 8 \times 8 \times 8 \times 8$<br>f $33 \times 33 \times 33 \times 33 \times 33 \times 33 \times 33 \times 33$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2 Write ea                                                                                                                                             | ich expression as                                                                                        | ; a single powe                                                    | er.         |                                       |           |                          |         |                                         |                                   |
| c $14 \times 14 \times 14 \times 14 \times 14 \times 14 \times 14$<br>c $14 \times 14 \times 14 \times 14 \times 14 \times 14$<br>c $8 \times 8 \times 8 \times 8 \times 8 \times 8 \times 8$<br>c $3 \times 33 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | c $14 \times 14 \times 14 \times 14 \times 14 \times 14 \times 14$<br>c $12 \times 12 \times 12 \times 12 \times 12 \times 12 \times 12 \times 12$<br>c $8 \times 8 \times 8 \times 8 \times 8 \times 8 \times 8$<br>f $33 \times 33 \times 33 \times 33 \times 33 \times 33 \times 33 \times 33$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <b>a</b> 7                                                                                                                                             | < 7 × 7                                                                                                  |                                                                    |             |                                       | Ь         | $5 \times 5 \times 5 >$  | < 5 × ! | 5                                       |                                   |
| e $8 \times 8 \times 8 \times 8 \times 8 \times 8 \times 8$<br>f $33 \times 33 \times 33 \times 33 \times 33 \times 33 \times 33 \times 33$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | e $8 \times 8 \times 8 \times 8 \times 8 \times 8 \times 8$<br>f $33 \times 33 \times 33 \times 33 \times 33 \times 33 \times 33 \times 33$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <b>c</b> 14                                                                                                                                            | $\times$ 14 $\times$ 14 $\times$ 14                                                                      | $4 \times 14 \times 14 >$                                          | × 14        |                                       | d         | 12 	imes 12 	imes        | 12 × 1  | $12 \times 12 \times 12$                | 2                                 |
| 3 a Calculate the difference between $3^2$ and $2^3$ . b Find the value of $3^3 + 4^2 + 2^4$ . 5 <sup>4</sup> can be written in several ways. Here are some. 5 × 5 × 5 × 5 5 <sup>2</sup> × 5 <sup>2</sup> 5 <sup>3</sup> × 5 <sup>1</sup> Write 4 <sup>5</sup> in as many different ways as you can. 6 Copy and complete these. a $4^2 = $ b $3^2 = 2^5$ b $3^2 = 2^5$ c $2^2 = 32$ Band 2 questions 6 Write the correct symbol <, > or = between each pair of numbers. a $2^5 = 6^2$ b $2^7 = 5^3$ c $4^3 = 3^4$ d $2^9 = 8^3$ e $10^3 = 2^{10}$ f $12^5 = 3^3$ 7 The expressions on these 12 cards can be matched into six pairs. All the missing numbers are the same. 4 a Match the cards into pairs. b Write each of these as a single power. a $4^5 \times 4^3$ b $6^{12} \times 6^4$ c $5^9 \times 5^3$ 6 Write each of these as a single power. a $4^5 \times 4^3$ b $6^{12} \times 6^4$ c $5^9 \times 5^3$ 6 Write each of these as a single power. a $3^5 + 3^3$ b $7^{1^4} + 7^9$ c $8^3 + 8^5$ d $2^{2^2}$ e $\frac{10^9}{10^3}$ f $2^{0^6}$ Write each of these as a single power. a $5^5 + 3^3$ b Write each of these as a single power. a $5^5 + 3^3$ b Write each of these as a single power. a $5^5 + 3^3$ b Write each of these as a single power. a $2^{(2^3)}$ b $(1^{2^3})$ b $(1^{2^3})$ b $(1^{2^3})$ b $(1^{2^3})$ b $(1^{2^3})$ b $(1^{2^3})$ c $(1^{2^3})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3 a Calculate the difference between $3^2$ and $2^3$ . b Find the value of $3^3 + 4^2 + 2^4$ . 5 f can be written in several ways. Here are some. 5 × 5 × 5 × 5 5 5 <sup>2</sup> × 5 <sup>2</sup> 5 <sup>3</sup> × 5 <sup>1</sup> Write 4 <sup>5</sup> in as many different ways as you can. 3 Copy and complete these. a $4^2 = $ b $3^2 = 125$ c $2^2 = 32$ Band 2 questions 3 Write the correct symbol <, > or = between each pair of numbers. a $2^5 = 6^2$ b $2^7 = 5^3$ c $4^3 = 3^4$ d $2^9 = 8^3$ e $10^3 = 125$ c $4^3 = 3^4$ d $2^9 = 8^3$ e $10^3 = 2^{10}$ f $12^5 = 3^9$ 7 The expressions on these 12 cards can be matched into six pairs. All the missing numbers are the same. 4 a Match the cards into pairs. b What is the missing number? 3 Write each of these as a single power. a $3^5 + 3^3$ b $2^{12} \times 5^6$ c $8^3 + 8^5$ c $5^3 \times 5^3$ 6 Write each of these as a single power. a $3^5 + 3^3$ b $2^{14} + 7^8$ c $8^3 + 8^5$ d $\frac{2^7}{2^3}$ e $\frac{10^6}{10^2}$ f $\frac{20^6}{20}$ 10 Write each of these as a single power. a $(5^2)^3$ b $(2^4)^5$ c $(13^6)^3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <b>e</b> 8                                                                                                                                             | $< 8 \times 8 \times 8 \times 8$                                                                         | $\times 8 \times 8$                                                |             |                                       | f         | $33 \times 33 \times 33$ | 33 × 3  | $3 \times 33 \times 33$                 | $3 \times 33 \times 33 \times 33$ |
| <b>b</b> Find the value of $3^3 + 4^2 + 2^4$ .<br><b>3</b> $5^4$ can be written in several ways.<br>Here are some.<br><b>5</b> $\times$ 5 $\times$ 5 $\times$ 5 <b>5 5</b> $2^2 \times 5^2$ <b>5</b> $3 \times 5^1$<br>Write $4^5$ in as many different ways as you can.<br><b>3</b> Copy and complete these.<br><b>a</b> $4^2 =$ <b>b</b> $3^3 = 125$ <b>c</b> $2^2 = 32$<br><b>Band 2 questions</b><br><b>3</b> Write the correct symbol <, > or = between each pair of numbers.<br><b>a</b> $2^5 = 6^2$ <b>b</b> $2^7 = 5^3$ <b>c</b> $4^3 = 3^4$<br><b>d</b> $2^9 = 8^3$ <b>c</b> $10^3 = 2^{10}$ <b>f</b> $12^5 = 3^8$<br><b>7</b> The expressions on these 12 cards can be matched into six pairs.<br>All the missing numbers are the same.<br><b>4 a</b> Match the cards into pairs.<br><b>b</b> What is the missing number?<br><b>5</b> Write each of these as a single power.<br><b>a</b> $4^5 \times 4^3$ <b>b</b> $7^{14} + 7^9$ <b>c</b> $8^3 + 8^5$ <b>d</b> $\frac{2^7}{2^3}$ <b>e</b> $\frac{10^8}{10^3}$ <b>f</b> $\frac{20^6}{20}$<br><b>b</b> Write each of these as a single power.<br><b>a</b> $3^5 + 3^3$ <b>b</b> $7^{14} + 7^9$ <b>c</b> $8^3 + 8^5$ <b>d</b> $\frac{2^7}{2^3}$ <b>e</b> $\frac{10^8}{10^3}$ <b>f</b> $\frac{20^6}{20}$<br><b>b</b> Write each of these as a single power.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | b Find the value of $3^3 + 4^2 + 2^4$ .<br>c $5^4$ can be written in several ways.<br>Here are some.<br>$5 \times 5 \times 5 \times 5$ $5^2 \times 5^2$ $5^3 \times 5^1$<br>Write $4^5$ in as many different ways as you can.<br>c Copy and complete these.<br>a $4^2 = $ b $3^3 = 125$ c $2^{-} = 32$<br>Band 2 questions<br>c $2^5 = 6^2$ b $2^7 = 5^3$ c $4^3 = 3^4$<br>d $2^9 = 8^3$ e $10^3 = 2^{10}$ f $12^5 = 3^8$<br>c $4^3 = 3^4$<br>d $2^9 = 8^3$ e $10^3 = 2^{10}$ f $12^5 = 3^8$<br>c $4^3 = 3^4$<br>d $2^9 = 8^3$ e $10^3 = 2^{10}$ f $12^5 = 3^8$<br>c $4^3 = 3^4$<br>d $2^9 = 8^3$ e $10^3 = 2^{10}$ f $10 = \times 5$ 16 3 8<br>a Match the cards into pairs.<br>b What is the missing number?<br>c Write each of these as a single power.<br>a $4^5 \times 4^3$ b $6^{12} \times 6^4$ c $5^9 \times 5^3$<br>c $10^8 = 10^8$ f $2^2^6$<br>c $10^8 = 10^8$ f $2^{20}$<br>c $10^8 = 10^8$ f $2^{20}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3 a Ca                                                                                                                                                 | culate the differe                                                                                       | ence between                                                       | 3² an       | d 2 <sup>3</sup> .                    |           |                          |         |                                         |                                   |
| <b>3</b> S <sup>4</sup> can be written in several ways.<br>Here are some.   5 × 5 × 5 × 5 5 <sup>2</sup> × 5 <sup>2</sup> 5 <sup>3</sup> × 5 <sup>1</sup> Write 4 <sup>5</sup> in as many different ways as you can. <b>6</b> Copy and complete these. <b>a</b> $4^2 = $ <b>b</b> $= 3^3 = 125$ <b>c</b> $2^{$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4 $5^4$ can be written in several ways.<br>Here are some.         5 × 5 × 5 × 5 $5^2 × 5^2$ $5^3 × 5^1$ Write $4^5$ in as many different ways as you can.         6       Copy and complete these.       a         a $4^2 = [$ b $]^3 = 125$ c $2 = 32$ Band 2 questions         6       Write the correct symbol <, > or = between each pair of numbers.       a $2^5 = 6^2$ b $2^7 = 5^3$ c $4^3 = 3^4$ a $2^5 = 6^2$ b $2^7 = 5^3$ c $4^3 = 3^4$ $4^2 = 3^8$ Of the expressions on these 12 cards can be matched into six pairs.<br>All the missing numbers are the same.         4 $3 \times = 9$ $32$ $= 3^3$ $6$ $10$ $\sim 5$ $16$ $3^ 8$ a       Match the cards into pairs.<br>b       What is the missing number? $6$ $10$ $\sim 5$ $16$ $3^ 8$ $= 3^5 + 3^3$ $6$ $10^{-2} \times 5^4$ $c$ $5^9 \times 5^3$ Write each of these as a single power.<br>a $3^5 + 3^3$ $b$ $7^{14} + 7^9$ $c$ $8^9 + 8^5$ $d$ $\frac{2^7}{2^3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | b Fir                                                                                                                                                  | d the value of 3 <sup>3</sup>                                                                            | $+ 4^2 + 2^4$ .                                                    |             |                                       |           |                          |         |                                         |                                   |
| Here are some.<br>$5 \times 5 \times 5 \times 5$ $5^{2} \times 5^{2}$ $5^{3} \times 5^{1}$ Write 4 <sup>5</sup> in as many different ways as you can.<br>(3) Copy and complete these.<br>a 4 <sup>2</sup> = b^{-1} = 125 	c 2 <sup>[-]</sup> = 32<br>Band 2 questions<br>(3) Write the correct symbol <, > or = between each pair of numbers.<br>a 2 <sup>5</sup> 6 <sup>2</sup> b 2 <sup>7</sup> 5 <sup>3</sup> c 4 <sup>3</sup> 3 <sup>4</sup><br>d 2 <sup>9</sup> 8 <sup>3</sup> e 10 <sup>3</sup> 2 <sup>10</sup> f 12 <sup>5</sup> 3 <sup>8</sup><br>(2) The expressions on these 12 cards can be matched into six pairs.<br>All the missing numbers are the same.<br>(4 <sup></sup> 3 \times 9 32^3 6 10 × 5 16 3 <sup></sup> 8<br>a Match the cards into pairs.<br>b What is the missing number?<br>(3) Write each of these as a single power.<br>a 4 <sup>5</sup> × 4 <sup>3</sup> b 6 <sup>12</sup> × 6 <sup>4</sup> c 5 <sup>9</sup> × 5 <sup>3</sup><br>(4) Write each of these as a single power.<br>a 3 <sup>5</sup> + 3 <sup>3</sup> b 7 <sup>14</sup> + 7 <sup>8</sup> c 8 <sup>9</sup> + 8 <sup>5</sup> c 2 <sup>7</sup> d 2 <sup>7</sup> c 10 <sup>8</sup> f 20 <sup>6</sup> c 10 <sup>9</sup> f 20 <sup>6</sup> c 10 <sup>9</sup> c 10 <sup></sup> | Here are some.<br>$5 \times 5 \times 5 \times 5$ $5^{2} \times 5^{2}$ $5^{3} \times 5^{1}$ Write 4 <sup>5</sup> in as many different ways as you can.<br>(a) 4 <sup>2</sup> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <b>4</b> 5 <sup>4</sup> can                                                                                                                            | e written in seve                                                                                        | ral ways.                                                          |             |                                       |           |                          |         |                                         |                                   |
| $5 \times 5 \times 5$ $5^2 \times 5^2$ $5^3 \times 5^1$ Write $4^5$ in as many different ways as you can.         3       Copy and complete these.         a $4^2 = \Box$ b         a $4^2 = \Box$ b         b $3 = 125$ c         2       Band 2 questions         6       Write the correct symbol <, > or = between each pair of numbers.         a $2^5$ $6^2$ b $2^7$ $5^3$ c $4^3$ $3^4$ d $2^9$ $8^3$ e $10^3$ $2^{10}$ f $12^5$ $3^8$ 7       The expressions on these 12 cards can be matched into six pairs.       All the missing numbers are the same.       Image: a matche as a single number?       Image: a matche as a single number?         8       Image: a matche as a single power.       a $4^5 \times 4^3$ b $6^{12} \times 6^4$ c $5^9 \times 5^3$ 9       Write each of these as a single power.       a $3^5 + 3^3$ b $7^{14} + 7^8$ c $8^9 + 8^5$ d $\frac{2^7}{2^3}$ e $\frac{10^8}{10^3}$ f $\frac{20^6}{20}$ 9       Write each of these as a single power.       a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $5 \times 5 \times 5$ $5^2 \times 5^2$ $5^3 \times 5^1$ Write $4^5$ in as many different ways as you can. <b>3</b> Copy and complete these. <b>a</b> $4^2 = $ <b>ba</b> $4^2 = $ <b>ba</b> $4^2 = $ <b>ba</b> $4^2 = $ <b>bb</b> $3 = 125$ <b>cb</b> $3 = 125$ <b>cb</b> $3 = 125$ <b>cb</b> $2^1 = 5^3$ <b>c</b> $4^2 = $ <b>b</b> $2^7 = 5^3$ <b>c</b> $4^3 = 3^4$ $d^{29} = 8^3$ <b>e</b> $10^3 = 2^{10}$ <b>f</b> $12^5 = 3^9$ <b>7</b> The expressions on these 12 cards can be matched into six pairs.All the missing numbers are the same. <b>43</b> × <b>9323610</b> $\times$ <b>a</b> Match the cards into pairs. <b>b</b> What is the missing number? <b>3</b> Write each of these as a single power. <b>a</b> $4^5 \times 4^3$ <b>b</b> $6^{12} \times 6^4$ <b>c</b> $5^9 \times 5^3$ <b>6</b> Write each of these as a single power. <b>a</b> $3^5 + 3^3$ <b>b</b> $7^{14} + 7^8$ <b>c</b> $8^9 + 8^5$ <b>d</b> $\frac{2^7}{2^2}$ <b>e</b> $\frac{10^6}{10^3}$ <b>f</b> $\frac{20^6}{20}$ <b>f</b> $\frac{10^5}{3}$ <b>b</b> $(2^4)^5$ <b>c</b> $(13^6)^3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Here ar                                                                                                                                                | e some.                                                                                                  | 5                                                                  |             |                                       |           |                          |         |                                         |                                   |
| Write $4^5$ in as many different ways as you can.<br>(a) $4^2 = $ b $3^2 = 125$ c $2^2 = 32$<br>Band 2 questions<br>(b) Write the correct symbol <, > or = between each pair of numbers.<br>(a) $2^5 = 6^2$ b $2^7 = 5^3$ c $4^3 = 3^4$<br>(c) $2^9 = 8^3$ c $10^3 = 2^{10}$ f $12^5 = 3^8$<br>(c) The expressions on these 12 cards can be matched into six pairs.<br>All the missing numbers are the same.<br>(c) $4^2 = 3^2 = 9$ (c) $3^2 = 3^3$ (c) $10 = \times 5$ (c) $3^2 = 8$ (c) $8 = 3^3$<br>(c) Write each of these as a single power.<br>(c) $3^3 + 3^3$ b $7^{14} + 7^8$ c $8^9 + 8^5$ c) $\frac{2^2}{2^3}$ e $\frac{10^9}{10^3}$ f $\frac{20^6}{20}$<br>(c) Write each of these as a single power.<br>(c) $(2^{2})^3$ b) $7^{14} + 7^8$ c) $8^9 + 8^5$ c) $\frac{2^2}{2^3}$ e $\frac{10^9}{10^3}$ f $\frac{20^6}{20}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Write 4 <sup>5</sup> in as many different ways as you can.<br>(a) $4^2 = $ b $3^2 = 125$ c $2^2 = 32$<br>Band 2 questions<br>(b) $3^2 = 125$ c $2^2 = 32$<br>Band 2 questions<br>(c) Write the correct symbol <, > or = between each pair of numbers.<br>(a) $2^5 = 6^2$ b $2^7 = 5^3$ c $4^3 = 3^4$<br>(c) $2^9 = 8^3$ c $10^3 = 2^{10}$ f $12^5 = 3^8$<br>(c) $4^3 = 3^8$<br>(c) $4^3 = 3^8$<br>(c) $4^3 = 3^8$<br>(c) $4^3 = 3^8$<br>(c) $10 = \times 5$ $16$ $3^3 = 8$<br>(c) | 5 × 5                                                                                                                                                  | $\times$ 5 $\times$ 5                                                                                    | $5^2 \times 5^2$                                                   |             | $5^3 \times 5^1$                      |           |                          |         |                                         |                                   |
| Write 4 <sup>5</sup> in as many different ways as you can.<br>(a) Copy and complete these.<br>(a) $4^2 = $ (b) $3^3 = 125$ (c) $2^{11} = 32$<br>Band 2 questions<br>(b) Write the correct symbol <, > or = between each pair of numbers.<br>(a) $2^{5}$ $6^{2}$ (b) $2^{7}$ $5^{3}$ (c) $4^{3}$ $3^{4}$<br>(d) $2^{9}$ $8^{3}$ (c) $10^{3}$ $2^{10}$ (f) $12^{5}$ $3^{8}$<br>(f) The expressions on these 12 cards can be matched into six pairs.<br>All the missing numbers are the same.<br>(4) $3 \times 3^{10}$ (9) $32^{10}$ $3^{10}$ (10) $3^{10}$ (16) $3^{10}$ (16) $3^{10}$ (17) $3^{10}$ (17) $3^{10}$ (17) $3^{10}$ (17) $3^{10}$ (17) $3^{10}$ (17) $3^{10}$ (17) $3^{10}$ (17) $3^{10}$ (17) $3^{10}$ (17) $3^{10}$ (17) $3^{10}$ (17) $3^{10}$ (17) $3^{10}$ (17) $3^{10}$ (17) $3^{10}$ (17) $3^{10}$ (17) $3^{10}$ (17) $3^{10}$ (17) $3^{10}$ (17) $3^{10}$ (17) $3^{10}$ (17) $3^{10}$ (17) $3^{10}$ (17) $3^{10}$ (17) $3^{10}$ (17) $3^{10}$ (17) $3^{10}$ (17) $3^{10}$ (17) $3^{10}$ (17) $3^{10}$ (17) $3^{10}$ (17) $3^{10}$ (17) $3^{10}$ (17) $3^{10}$ (17) $3^{10}$ (17) $3^{10}$ (17) $3^{10}$ (17) $3^{10}$ (17) $3^{10}$ (17) $3^{10}$ (17) $3^{10}$ (17) $3^{10}$ (17) $3^{10}$ (17) $3^{10}$ (17) $3^{10}$ (17) $3^{10}$ (17) $3^{10}$ (17) $3^{10}$ (17) $3^{10}$ (17) $3^{10}$ (17) $3^{10}$ (17) $3^{10}$ (17) $3^{10}$ (17) $3^{10}$ (17) $3^{10}$ (17) $3^{10}$ (17) $3^{10}$ (17) $3^{10}$ (17) $3^{10}$ (17) $3^{10}$ (17) $3^{10}$ (17) $3^{10}$ (17) $3^{10}$ (17) $3^{10}$ (17) $3^{10}$ (17) $3^{10}$ (17) $3^{10}$ (17) $3^{10}$ (17) $3^{10}$ (17) $3^{10}$ (17) $3^{10}$ (17) $3^{10}$ (17) $3^{10}$ (17) $3^{10}$ (17) $3^{10}$ (17) $3^{10}$ (17) $3^{10}$ (17) $3^{10}$ (17) $3^{10}$ (17) $3^{10}$ (17) $3^{10}$ (17) $3^{10}$ (17) $3^{10}$ (17) $3^{10}$ (17) $3^{10}$ (17) $3^{10}$ (17) $3^{10}$ (17) $3^{10}$ (17) $3^{10}$ (17) $3^{10}$ (17) $3^{10}$ (17) $3^{10}$ (17) $3^{10}$ (17) $3^{10}$ (17) $3^{10}$ (17) $3^{10}$ (17) $3^{10}$ (17) $3^{10}$ (17) $3^{10}$ (17) $3^{10}$ (17) $3^{10}$ (17) $3^{10}$ (17) $3^{10}$ (17) $3^{10}$ (17) $3^{10}$ (17) $3^{10}$ (17) $3^{10}$ (17) $3^{10}$ (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Write 4 <sup>5</sup> in as many different ways as you can.<br>(a) Copy and complete these.<br>(a) $4^2 = $ (b) $3^2 = 125$ (c) $2^2 = 32$<br><b>Band 2 questions</b><br>(a) Write the correct symbol <, > or = between each pair of numbers.<br>(a) $2^5 = 6^2$ (b) $2^7 = 5^3$ (c) $4^3 = 3^4$<br>(d) $2^9 = 8^3$ (c) $10^3 = 2^{10}$ (f) $12^5 = 3^8$<br>(f) The expressions on these 12 cards can be matched into six pairs.<br>All the missing numbers are the same.<br>(4) $3 \times 3^2 = 3^3$ (6) $10 \times 5^3 = 16^3 = 8^3$<br>(a) Match the cards into pairs.<br>(b) What is the missing number?<br>(c) Write each of these as a single power.<br>(a) $4^5 \times 4^3$ (c) $5^9 \times 5^3$<br>(c) Write each of these as a single power.<br>(a) $3^5 \times 3^3$ (c) $7^{14} + 7^8$ (c) $8^9 + 8^5$ (c) $\frac{2^7}{2^3}$ (c) $\frac{10^8}{10^3}$ (f) $\frac{20^6}{20}$<br>(f) Write each of these as a single power.<br>(a) $(6^2)^3$ (c) $(2^4)^5$ (c) $(13^6)^3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1/1                                                                                                                                                    | ~ ] ~ ]                                                                                                  | 1 / 1                                                              |             | J / J                                 |           |                          |         |                                         |                                   |
| Solution complete these. a $4^2 = $ b $3^3 = 125$ c $2^{\square} = 32$ Band 2 questions Solution with the correct symbol <, > or = between each pair of numbers. a $2^5 6^2$ b $2^7 5^3$ c $4^3 3^4$ f $12^5 3^8$ The expressions on these 12 cards can be matched into six pairs. All the missing numbers are the same. 4 3 x 9 32 3 6 10 x 5 16 3 8 a a Match the cards into pairs. b What is the missing number? Write each of these as a single power. a $4^5 \times 4^3$ b $6^{12} \times 6^4$ c $5^9 \times 5^3$ Write each of these as a single power. a $3^5 \div 3^3$ b $7^{14} \div 7^8$ c $8^9 \div 8^5$ d $\frac{2^7}{2^3}$ e $\frac{10^6}{10^3}$ f $\frac{20^6}{20}$ Write each of these as a single power. a $3^5 \div 3^3$ b $7^{14} \div 7^8$ c $8^9 \div 8^5$ d $\frac{2^7}{2^3}$ e $\frac{10^6}{10^3}$ f $\frac{20^6}{20}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <ul> <li>Copy and complete these.</li> <li>a 4<sup>2</sup> = □</li> <li>b □<sup>3</sup> = 125</li> <li>c 2<sup>□</sup> = 32</li> <li>Band 2 questions</li> <li>Write the correct symbol &lt;, &gt; or = between each pair of numbers.</li> <li>a 2<sup>5</sup> 6<sup>2</sup></li> <li>b 2<sup>7</sup> 5<sup>3</sup></li> <li>c 4<sup>3</sup> 3<sup>4</sup></li> <li>d 2<sup>9</sup> 8<sup>3</sup></li> <li>e 10<sup>3</sup> 2<sup>10</sup></li> <li>f 12<sup>5</sup> 3<sup>8</sup></li> <li>7 The expressions on these 12 cards can be matched into six pairs.<br/>All the missing numbers are the same.</li> <li>4<sup>□</sup> 3 × 9</li> <li>32</li> <li>3</li> <li>6</li> <li>10</li> <li>×5</li> <li>16</li> <li>3<sup>□</sup> 8</li> <li>a Match the cards into pairs.</li> <li>b What is the missing number?</li> <li>Write each of these as a single power.</li> <li>a 4<sup>5</sup> × 4<sup>3</sup></li> <li>b 6<sup>12</sup> × 6<sup>4</sup></li> <li>c 5<sup>9</sup> × 5<sup>3</sup></li> <li>Write each of these as a single power.</li> <li>a 3<sup>5</sup> + 3<sup>3</sup></li> <li>b 7<sup>14</sup> + 7<sup>8</sup></li> <li>c 8<sup>9</sup> + 8<sup>5</sup></li> <li>d 2<sup>7</sup>/2<sup>3</sup></li> <li>e 10<sup>9</sup>/10<sup>2</sup></li> <li>f 20<sup>6</sup>/20</li> <li>Write each of these as a single power.</li> <li>a (6<sup>2</sup>)<sup>3</sup></li> <li>b (2<sup>4</sup>)<sup>5</sup></li> <li>c (13<sup>6</sup>)<sup>3</sup></li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Write 4                                                                                                                                                | in as many diffe                                                                                         | rent ways as ų                                                     | you ca      | an.                                   |           |                          |         |                                         |                                   |
| a $4^2 = $ b $3^3 = 125$ c $2^2 = 32$<br>Band 2 questions<br>Write the correct symbol <, > or = between each pair of numbers.<br>a $2^5 = 6^2$ b $2^7 = 5^3$ c $4^3 = 3^4$<br>d $2^9 = 8^3$ e $10^3 = 2^{10}$ f $12^5 = 3^8$<br>The expressions on these 12 cards can be matched into six pairs.<br>All the missing numbers are the same.<br>4 3 x 9 32 3 6 10 x 5 16 3 8 a<br>a Match the cards into pairs.<br>b What is the missing number?<br>Write each of these as a single power.<br>a $4^5 \times 4^3$ b $6^{12} \times 6^4$ c $5^9 \times 5^3$<br>Write each of these as a single power.<br>a $3^5 + 3^3$ b $7^{14} + 7^8$ c $8^3 + 8^5$ d $\frac{2^7}{2^3}$ e $\frac{10^6}{10^3}$ f $\frac{20^6}{20}$<br>Write each of these as a single power.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | a $4^2 = $ b $3^3 = 125$ c $2^2 = 32$<br>Band 2 questions<br>Write the correct symbol <, > or = between each pair of numbers.<br>a $2^5 = 6^2$ b $2^7 = 5^3$ c $4^3 = 3^4$<br>d $2^9 = 8^3$ e $10^3 = 2^{10}$ f $12^5 = 3^8$<br>The expressions on these 12 cards can be matched into six pairs.<br>All the missing numbers are the same.<br>4 3 x 9 32 3 6 10 x 5 16 3 8<br>a Match the cards into pairs.<br>b What is the missing number?<br>Write each of these as a single power.<br>a $4^5 \times 4^3$ b $6^{12} \times 6^4$ c $5^9 \times 5^3$<br>Write each of these as a single power.<br>a $3^5 + 3^3$ b $7^{14} + 7^8$ c $8^9 + 8^5$ d $\frac{2^7}{2^3}$ e $\frac{10^8}{10^3}$ f $\frac{20^6}{20}$<br>Write each of these as a single power.<br>a $(6^2)^3$ b $(2^4)^5$ c $(13^6)^3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>6</b> Сори а                                                                                                                                        | nd complete thes                                                                                         | e.                                                                 |             |                                       |           |                          |         |                                         |                                   |
| <b>Band 2 questions</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b>Band 2 questions</b><br><b>C</b> $2^{2-1} = 3^2$<br><b>Band 2 questions</b><br><b>C</b> $2^{2-1} = 3^2$<br><b>Band 2 questions</b><br><b>C</b> $4^3 = 3^4$<br><b>d</b> $2^9 = 8^3$<br><b>e</b> $10^3 = 2^{10}$<br><b>f</b> $12^5 = 3^8$<br><b>7</b> The expressions on these 12 cards can be matched into six pairs.<br>All the missing numbers are the same.<br><b>4 3 x 9 32 3 6 10 x 5 16 3 8</b><br><b>a</b> Match the cards into pairs.<br><b>b</b> What is the missing number?<br><b>8</b> Write each of these as a single power.<br><b>a</b> $4^5 \times 4^3$<br><b>b</b> $6^{12} \times 6^4$<br><b>c</b> $5^9 \times 5^3$<br><b>9</b> Write each of these as a single power.<br><b>a</b> $3^5 + 3^3$<br><b>b</b> $7^{14} + 7^8$<br><b>c</b> $8^9 + 8^5$<br><b>d</b> $\frac{2^7}{2^3}$<br><b>e</b> $\frac{10^8}{10^3}$<br><b>f</b> $\frac{20^6}{20}$<br><b>f</b> Write each of these as a single power.<br><b>a</b> $(6^2)^3$<br><b>b</b> $(2^4)^5$<br><b>c</b> $(13^6)^3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                        |                                                                                                          | 0.                                                                 | h           |                                       |           |                          |         | -<br>-                                  |                                   |
| <b>Band 2 questions</b><br>Write the correct symbol <, > or = between each pair of numbers.<br>a $2^5 \ 6^2$ b $2^7 \ 5^3$ c $4^3 \ 3^4$<br>f $12^5 \ 3^8$<br>The expressions on these 12 cards can be matched into six pairs.<br>All the missing numbers are the same.<br><b>4 3 x 9 32 3 6 10 x 5 16 3 8 a</b><br>a Match the cards into pairs.<br>b What is the missing number?<br>Write each of these as a single power.<br>a $4^5 \times 4^3$ b $6^{12} \times 6^4$ c $5^9 \times 5^3$<br>Write each of these as a single power.<br>a $3^5 \pm 3^3$ b $7^{14} \pm 7^8$ c $8^9 \pm 8^5$ d $\frac{2^7}{2^3}$ e $\frac{10^8}{10^3}$ f $\frac{20^6}{20}$<br>Write each of these as a single power.<br>a $3^5 \pm 3^3$ b $7^{14} \pm 7^8$ c $8^9 \pm 8^5$ d $\frac{2^7}{2^3}$ e $\frac{10^8}{10^3}$ f $\frac{20^6}{20}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <b>Band 2 questions</b><br>Write the correct symbol <, > or = between each pair of numbers.<br>a $2^5$ $6^2$ b $2^7$ $5^3$ c $4^3$ $3^4$<br>d $2^9$ $8^3$ e $10^3$ $2^{10}$ f $12^5$ $3^8$<br>The expressions on these 12 cards can be matched into six pairs.<br>All the missing numbers are the same.<br>4 3 x 9 32 3 6 10 x 5 16 3 8 3<br>a Match the cards into pairs.<br>b What is the missing number?<br>Write each of these as a single power.<br>a $4^5 \times 4^3$ b $6^{12} \times 6^4$ c $5^9 \times 5^3$<br>Write each of these as a single power.<br>a $3^5 + 3^3$ b $7^{14} + 7^8$ c $8^9 + 8^5$ d $\frac{2^7}{2^3}$ e $\frac{10^8}{10^3}$ f $\frac{20^6}{20}$<br>Write each of these as a single power.<br>a $(6^2)^3$ b $(2^4)^5$ c $(13^6)^3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>d</b> 4                                                                                                                                             | _                                                                                                        |                                                                    | O           | = 12                                  | .5        |                          | C       | 2 = 32                                  |                                   |
| <b>3</b> Write the correct symbol <, > or = between each pair of numbers. <b>a</b> $2^5  6^2$ <b>b</b> $2^7  5^3$ <b>c</b> $4^3  3^4$ <b>f</b> $12^5  3^8$ <b>7</b> The expressions on these 12 cards can be matched into six pairs. All the missing numbers are the same. <b>4 3 x 9 32 3 6 10 x 5 16 3 8 a a</b> Match the cards into pairs. <b>b</b> What is the missing number? <b>8</b> Write each of these as a single power. <b>a</b> $4^5 \times 4^3$ <b>b</b> $7^{14} \pm 7^8$ <b>c</b> $8^9 \pm 8^5$ <b>d</b> $\frac{2^7}{2^3}$ <b>e</b> $\frac{10^8}{10^3}$ <b>f</b> $\frac{20^6}{20}$ <b>f</b> Write each of these as a single power. <b>a</b> $3^5 \pm 3^3$ <b>b</b> $7^{14} \pm 7^8$ <b>c</b> $8^9 \pm 8^5$ <b>d</b> $\frac{2^7}{2^3}$ <b>e</b> $\frac{10^8}{10^3}$ <b>f</b> $\frac{20^6}{20}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <b>3</b> Write the correct symbol <, > or = between each pair of numbers. <b>a</b> $2^5 \ 6^2$ <b>b</b> $2^2 \ 5^3$ <b>c</b> $4^3 \ 3^4$ <b>f</b> $12^5 \ 3^8$ <b>7</b> The expressions on these 12 cards can be matched into six pairs. All the missing numbers are the same. <b>4 3 x 9 32 3 6 10 x 5 16 3 8 a a</b> Match the cards into pairs. <b>b</b> What is the missing number? <b>3</b> Write each of these as a single power. <b>a</b> $4^5 \times 4^3$ <b>b</b> $6^{12} \times 6^4$ <b>c</b> $5^9 \times 5^3$ <b>c</b> $10^6 \times 5^3$ <b>f</b> $20^6 \times 5^3$ <b>f</b> Write each of these as a single power. <b>a</b> $3^5 \div 3^3$ <b>b</b> $7^{14} \div 7^8$ <b>c</b> $8^9 \div 8^5$ <b>d</b> $\frac{2^7}{2^3}$ <b>e</b> $\frac{10^6}{10^3}$ <b>f</b> $\frac{20^6}{20}$ <b>f</b> Write each of these as a single power. <b>a</b> $(6^2)^3$ <b>b</b> $(2^4)^5$ <b>c</b> $(13^6)^3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Band 9                                                                                                                                                 | auestions                                                                                                |                                                                    |             |                                       |           |                          |         |                                         |                                   |
| 43 ×9323610× 51638aMatch the cards into pairs.bWhat is the missing number?3Write each of these as a single power.a $4^5 \times 4^3$ b $6^{12} \times 6^4$ c $5^9 \times 5^3$ 9Write each of these as a single power.a $3^5 \div 3^3$ b $7^{14} \div 7^8$ c $8^9 \div 8^5$ d $\frac{2^7}{2^3}$ e $\frac{10^8}{10^3}$ f $\frac{20^6}{20}$ 10Write each of these as a single power.a $(2^4)^5$ b $(2^4)^5$ c $(12^6)^3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 43 ×9323610×51638aMatch the cards into pairs.<br>bWhat is the missing number?3Write each of these as a single power.<br>a455553Write each of these as a single power.<br>a35 ÷ 3b $7^{14} \div 7^8$ C $8^9 \div 8^5$ d $\frac{2^7}{2^3}$ e $\frac{10^8}{10^3}$ f $\frac{20^6}{20}$ 10Write each of these as a single power.<br>a(6^2)^3b $(2^4)^5$ C $(13^6)^3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | d 2 <sup>9</sup><br>d 2 <sup>9</sup><br>The exp<br>All the r                                                                                           | 8 <sup>3</sup><br>ressions on these<br>hissing numbers                                                   | e 12 cards car<br>are the same.                                    | e<br>n be m | 10 <sup>3</sup> 2 <sup>1</sup>        | six pairs | <u>.</u>                 | f       | 12 <sup>5</sup> 3 <sup>8</sup>          |                                   |
| 3 Write each of these as a single power. a $4^5 \times 4^3$ b $6^{12} \times 6^4$ c $5^9 \times 5^3$ 9 Write each of these as a single power. a $3^5 \div 3^3$ b $7^{14} \div 7^8$ c $8^9 \div 8^5$ d $\frac{2^7}{2^3}$ e $\frac{10^8}{10^3}$ f $\frac{20^6}{20}$ 10 Write each of these as a single power. a $(5^2)^3$ b $(2^4)^5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8       Write each of these as a single power.         a $4^5 \times 4^3$ b $6^{12} \times 6^4$ c $5^9 \times 5^3$ 9       Write each of these as a single power.       a $3^5 \div 3^3$ b $7^{14} \div 7^8$ c $8^9 \div 8^5$ d $\frac{2^7}{2^3}$ e $\frac{10^8}{10^3}$ f $\frac{20^6}{20}$ 10       Write each of these as a single power.       a       (6^2)^3       b       (2^4)^5       c       (13^6)^3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4                                                                                                                                                      | <b>3</b> × <b>9</b><br>tch the cards into                                                                | pairs.                                                             |             | ] <sup>3</sup> 6                      |           | ) _ × 5                  | 16      | 3                                       | 8                                 |
| a $4^{3} \times 4^{3}$<br>b $6^{12} \times 6^{4}$<br>c $5^{9} \times 5^{3}$<br>Write each of these as a single power.<br>a $3^{5} \div 3^{3}$<br>b $7^{14} \div 7^{8}$<br>c $8^{9} \div 8^{5}$<br>d $\frac{2^{7}}{2^{3}}$<br>e $\frac{10^{8}}{10^{3}}$<br>f $\frac{20^{6}}{20}$<br>Write each of these as a single power.<br>a $(c^{2})^{3}$<br>b $(2^{4})^{5}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | a $4^{5} \times 4^{3}$ b $6^{12} \times 6^{4}$ c $5^{9} \times 5^{3}$ Image: Product of these as a single power.       a $3^{5} \div 3^{3}$ b $7^{14} \div 7^{8}$ c $8^{9} \div 8^{5}$ d $\frac{2^{7}}{2^{3}}$ e $\frac{10^{8}}{10^{3}}$ f $\frac{20^{6}}{20}$ Image: Write each of these as a single power.       a $(6^{2})^{3}$ b $(2^{4})^{5}$ c $(13^{6})^{3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | b Wł                                                                                                                                                   |                                                                                                          |                                                                    |             |                                       |           |                          |         |                                         |                                   |
| 9 Write each of these as a single power.<br>a $3^5 \div 3^3$ b $7^{14} \div 7^8$ C $8^9 \div 8^5$ d $\frac{2^7}{2^3}$ e $\frac{10^8}{10^3}$ f $\frac{20^6}{20}$<br>10 Write each of these as a single power.<br>a $(c^2)^3$ b $(2^4)^5$ b $(2^4)^5$ c $(12^6)^3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Image: Write each of these as a single power.       a $3^5 \div 3^3$ b $7^{14} \div 7^8$ C $8^9 \div 8^5$ d $\frac{2^7}{2^3}$ e $\frac{10^8}{10^3}$ f $\frac{20^6}{20}$ Image: Write each of these as a single power.       a $(6^2)^3$ b $(2^4)^5$ c $(13^6)^3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | b Wi<br>8 Write e                                                                                                                                      | ich of these as a s                                                                                      | single power.                                                      |             | - 12                                  |           |                          |         | -0 2                                    |                                   |
| <b>a</b> $3^5 \div 3^3$ <b>b</b> $7^{14} \div 7^8$ <b>c</b> $8^9 \div 8^5$ <b>d</b> $\frac{2^r}{2^3}$ <b>e</b> $\frac{10^\circ}{10^3}$ <b>f</b> $\frac{20^\circ}{20}$<br><b>i</b> Write each of these as a single power.<br><b>a</b> $(c^2)^3$ <b>b</b> $(2^4)^5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | a $3^{5} \div 3^{3}$ b $7^{14} \div 7^{8}$ c $8^{9} \div 8^{5}$ d $\frac{2'}{2^{3}}$ e $\frac{10^{\circ}}{10^{3}}$ f $\frac{20^{\circ}}{20}$<br>Write each of these as a single power.<br>a $(6^{2})^{3}$ b $(2^{4})^{5}$ c $(13^{6})^{3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | b Wi<br>8 Write ea<br>a 4 <sup>5</sup>                                                                                                                 | ich of these as a s $\times 4^3$                                                                         | single power.                                                      | b           | $6^{12} \times 6^{4}$                 |           |                          | с       | $5^9 	imes 5^3$                         |                                   |
| $2^{\circ} 	 10^{\circ} 	 20$ Write each of these as a single power.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $2^3$ $10^3$ $20$ Write each of these as a single power. $a$ $(6^2)^3$ $b$ $(2^4)^5$ $c$ $(13^6)^3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | b Wi<br>8 Write e<br>a 4 <sup>5</sup><br>9 Write e                                                                                                     | inch of these as a s $	imes$ 4 $^3$ inch of these as a s                                                 | single power.                                                      | Ь           | 6 <sup>12</sup> × 6 <sup>4</sup>      |           | -7                       | с       | $5^9 \times 5^3$                        | 6                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>a</b> $(6^2)^3$ <b>b</b> $(2^4)^5$ <b>c</b> $(13^6)^3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <ul> <li>b Wi</li> <li>8 Write e.</li> <li>a 4<sup>5</sup></li> <li>9 Write e.</li> <li>a 3<sup>5</sup></li> </ul>                                     | ach of these as a s<br>$\times 4^3$<br>ich of these as a s<br>$\div 3^3$ <b>b</b>                        | single power.<br>single power.<br>7 <sup>14</sup> ÷ 7 <sup>8</sup> | ხ<br>c      | $6^{12} \times 6^4$<br>$8^9 \div 8^5$ | d         | $\frac{2^{7}}{3}$        | c<br>e  | $5^9 \times 5^3$<br>$\frac{10^8}{10^3}$ | f $\frac{20^6}{100}$              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | d (b <sup>-</sup> ) <sup>-</sup> C (13 <sup>o</sup> ) <sup>o</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <ul> <li>b Wi</li> <li>8 Write example</li> <li>a 4<sup>5</sup></li> <li>9 Write example</li> <li>a 3<sup>5</sup></li> <li>10 Write example</li> </ul> | ach of these as a s<br>$\times 4^3$<br>ich of these as a s<br>$\div 3^3$ <b>b</b><br>ich of these as a s | single power.<br>single power.<br>7 <sup>14</sup> ÷ 7 <sup>8</sup> | ხ<br>c      | $6^{12} \times 6^4$ $8^9 \div 8^5$    | d         | $\frac{2^{7}}{2^{3}}$    | c<br>e  | $5^9 \times 5^3$ $\frac{10^8}{10^3}$    | <b>f</b> $\frac{20^6}{20}$        |

**Copyright: Sample material** 

**1** Powers and indices

| Reasoning  | 0               | a<br>b<br>c<br>d<br>e | Write down the<br>Write 49 as a<br>Write $7^2 \div 7^2$<br><b>i</b> as a powe<br>What is the very<br>What are the | ne value<br>power c<br>ver of 7<br>alue of 7<br>values c | of 49 ÷<br>of 7.<br><sup>20</sup> ?<br>of | 49.                 | ii               | as a nu                     | mber.        |                   |            |                                                           |                     |                           |
|------------|-----------------|-----------------------|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|-------------------------------------------|---------------------|------------------|-----------------------------|--------------|-------------------|------------|-----------------------------------------------------------|---------------------|---------------------------|
|            |                 |                       | <b>i</b> 2 <sup>0</sup>                                                                                           |                                                          |                                           |                     | ii               | 3 <sup>0</sup>              |              |                   |            | <b>iii</b> 17 <sup>0</sup> ?                              |                     |                           |
|            | •               | f                     | State a gener                                                                                                     | al value                                                 | for the p                                 | ower zei            | 0.               |                             |              |                   |            |                                                           |                     |                           |
| Flue       | U               | wri                   | (4 27)8                                                                                                           | e calcul                                                 | ations as                                 | s a single          | powe :<br>وح     | r.<br>• ⁊2                  |              |                   | ~          | 45 V 49                                                   |                     |                           |
| ncy        |                 | d                     | $(13^{\circ})^{\circ}$                                                                                            |                                                          |                                           | 0                   | (12              | יר ר<br>4ו6                 |              |                   | ¢          | $4^{\circ} \times 4^{\circ}$<br>$11^{3} \vee 11^{4}$      | ·∨ 11 <sup>5</sup>  |                           |
| T          | ß               | Woi                   | k out the value                                                                                                   | ofthes                                                   | e Give e                                  | ach of ur           | ur ang           | J<br>swers as               | a deci       | imal              |            |                                                           | × 11                |                           |
|            |                 | a                     | $2^{-1}$                                                                                                          | <b>b</b> 1                                               | .0 <sup>-1</sup>                          | c c                 | 5 <sup>-1</sup>  |                             | d            | $4^{-1}$          | e          | $100^{-1}$                                                | f                   | 8-1                       |
| R          | 14              | Jen                   | nima says that                                                                                                    | $3^4 \times 2^2$                                         | is equa                                   | to 6 <sup>6</sup> . | -                |                             |              |                   |            |                                                           |                     | -                         |
| easor      |                 | Sho                   | w that Jemima                                                                                                     | a is wron                                                | ıg.                                       |                     |                  |                             |              |                   |            |                                                           |                     |                           |
| ning       |                 | Wha                   | at mistake has                                                                                                    | she ma                                                   | de?                                       |                     |                  |                             |              |                   |            |                                                           |                     |                           |
| Fe         | <b>B</b><br>(5) | anc<br>Wor            | k out the value                                                                                                   | ONS<br>e of thes                                         | e. Give e                                 | ach of yo           | our ans          | swers as                    | a deci       | imal.             |            | 40-3                                                      | C.                  | 3                         |
| ency       |                 | a                     | 2-2                                                                                                               | <b>b</b> 1                                               | .0-2                                      | C                   | 5-2              |                             | d            | 2-3               | e          | 10-3                                                      | t                   | 5-3                       |
| T          | 6               | WOI                   | $\frac{5}{242}$                                                                                                   | e of thes                                                | e.                                        | h                   | 7/10             | 0                           |              |                   | ~          | 4/625                                                     |                     |                           |
|            | 17              | <b>u</b><br>Writ      | VC45<br>te these as a s                                                                                           | ingle no                                                 | wer of 5                                  | Ŭ                   | VIC              | 0                           |              |                   | C          | V025                                                      |                     |                           |
|            |                 | а                     | $5^3 \times 5^{-2}$                                                                                               |                                                          |                                           | b                   | 5 <sup>3</sup> - | ÷ 5 <sup>-2</sup>           |              |                   | с          | $(5^{-2})^3$                                              |                     |                           |
|            |                 | d                     | $5^{-4} \times 5^{8}$                                                                                             |                                                          |                                           | e                   | 5-1              | × 5                         |              |                   | f          | $5^{-2} \div 5^{-2}$                                      | 2                   |                           |
| P          | 18              | Fine                  | d the missing o                                                                                                   | ligits.                                                  |                                           |                     |                  |                             |              |                   |            |                                                           |                     |                           |
| oble       |                 | а                     | $7^{\square} = 7^5 \div 7^2$                                                                                      |                                                          | ь                                         | $7^3 = 7^3$         | × 7              |                             | с            | $(7^{-})^4 = 7^8$ |            | <b>d</b> 7                                                | $^{6} \div 7^{2} =$ | $=7^{\square} \times 7^3$ |
| m so       | 19              | Wri                   | te each of thes                                                                                                   | e as a si                                                | ngle pov                                  | ver.                |                  |                             |              |                   |            |                                                           |                     |                           |
| lving      |                 | 2                     | $3^{5} \times 3^{4}$                                                                                              |                                                          | 0 1 -                                     | h                   | (24)             | $(\times 2^2)^3$            |              |                   |            | $(2^2)^3$                                                 |                     |                           |
| Ÿ.         |                 | a                     | 3 <sup>6</sup>                                                                                                    |                                                          |                                           | 0                   | (                | )                           |              |                   | С          | $\frac{(-)}{(2^4)^2}$                                     |                     |                           |
|            |                 |                       | <sup>7</sup>                                                                                                      |                                                          |                                           |                     | ,                | \ <b>5</b>                  |              |                   |            | (2)                                                       |                     |                           |
|            |                 | d                     | $\frac{6}{-3}$                                                                                                    |                                                          |                                           | e                   | (5 <sup>-3</sup> | $\times 5^4$ ) <sup>3</sup> |              |                   | f          | $\frac{9^{\circ} \times 9^{\circ}}{0^{-2} \times 0^{-1}}$ |                     |                           |
|            | <b>M</b>        | а                     | 0<br>Prius saus th                                                                                                | at (5 <sup>3</sup> )2                                    | is the sa                                 | me as ( I           | 213              |                             |              |                   |            | 9 × 9                                                     |                     |                           |
| easo       | •               | ŭ                     | Show that Pri                                                                                                     | ua is rig                                                | ht.                                       |                     | , , .            |                             |              |                   |            |                                                           |                     |                           |
| , ning     |                 | Ь                     | Show that ( <i>a</i> <sup>i</sup>                                                                                 | <i>n</i> ) <i>n</i> is th                                | e same a                                  | is $(a^n)^m$ .      |                  |                             |              |                   |            |                                                           |                     |                           |
| , <b>T</b> |                 | с                     | ls it <b>always t</b>                                                                                             | rue, som                                                 | netimes                                   | true or n           | ever tr          | ue that c                   | $a^m \div a$ | $a^n$ the same as | $a^n \div$ | $a^m$ ?                                                   |                     |                           |
|            |                 |                       | Explain your                                                                                                      | answer                                                   | fully.                                    |                     |                  |                             |              |                   |            |                                                           |                     |                           |

# 1.2 Standard form

# Skill checker

| 1 | Wo                         | rk out these powers of 10.                                                                                                                                    | 3 a            | Copy and complete                                                                                                                                                      | e this pattern.                                                        |
|---|----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|
| 0 | a<br>b<br>c<br>d<br>e<br>f | 10 <sup>1</sup><br>10 <sup>2</sup><br>10 <sup>3</sup><br>10 <sup>4</sup><br>10 <sup>5</sup><br>10 <sup>6</sup>                                                |                | $2.7 \times 10 = $<br>$2.7 \times 10^{2} = 2.7 \times $<br>$2.7 \times 10^{3} = 2.7 \times $<br>$2.7 \times 10^{4} = 2.7 \times $<br>$2.7 \times 10^{5} = 2.7 \times $ | 100 = $1000 = $ $1000 = $ $1000 = $ $1000 =$                           |
|   | b                          | <ul> <li>i an ordinary number</li> <li>ii a power of 10.</li> <li>Write down 1 billion as</li> <li>i an ordinary number</li> <li>ii a power of 10.</li> </ul> | b              | 2.7 × = 2.7 ×<br>Work out the value<br>Which of these is t<br>number?                                                                                                  | = 2700000<br>e of 2.7 × 10 <sup>9</sup><br>the correct way to say this |
|   | с                          | A googol is 10 <sup>100</sup> .<br>Alfie writes a googol down as an ordinary number.<br>How many zeros should follow the 1?                                   | 2.7 b<br>27 th | illion<br>ousand million                                                                                                                                               | 27 hundred million<br>2 thousand 7 hundred million                     |

#### Using standard form for large numbers

You often see headlines in newspapers that involve large numbers. For example, there are more than 400 billion Lego bricks in the world or there are 8.9 million school children in the UK.

In newspapers, large numbers are usually written using the words 'billion' and 'million' rather than being written out in full like this:

400 000 000 000 Lego bricks or 8 900 000 school children

In maths and science, large numbers are usually written using powers of 10

For example,  $4 \times 10^{11}$  Lego bricks or  $8.9 \times 10^{6}$  school children

Standard form is a way of writing down large numbers without writing down all the zeros.

A number is in standard form when it is written as

#### a number between 1 and 10 multiplied by a power of 10

In symbols this is written as

#### $A \times 10^{n}$

- A can be any number from 1 up to 10 (but not 10).  $\blacklozenge$
- *n* must be an integer (whole number).

**Powers and indices** 

# **Copyright: Sample material**

 $1 \le A < 10$ 

#### Worked example

The Pacific Ocean has a surface area of  $168\,000\,000\,km^2$ . Write this number in standard form.

#### **Solution**

168 000 000 in standard form is  $1.68 \times 10^{\circ}$  (*A* is always between 1 and 10.

Use a place value diagram to help you work out what the power of 10 should be.

| НМ | ТМ | М | H Th | T Th | Th | Н | Т | 0 |   | t | h |
|----|----|---|------|------|----|---|---|---|---|---|---|
|    |    |   |      |      |    |   |   | 1 | • | 6 | 8 |
| 1  | 6  | 8 | 0    | 0    | 0  | 0 | 0 | 0 |   |   |   |

#### $168\,000\,000 = 1.68 \times 10\,000\,000$

= 1.68 × 10<sup>8</sup>

You have to multiply 1.68 by ten 8 times to get 168000000.

So the Pacific Ocean has a surface area of  $1.68 \times 10^8 \, \rm km^2$ 

You don't need to draw a place value diagram each time. The digits move 8 places so that the decimal point is now between the 1 and the 6, so you multiply by 10<sup>8</sup>.

0000000.=1.68×10<sup>8</sup> ←

Count the arrows. They tell you the power of 10.

# Using standard form for small numbers

| Activity                            | • • • • • • • • • • | • • • • |                                                                    |
|-------------------------------------|---------------------|---------|--------------------------------------------------------------------|
| ① Complete this pattern.            | 2                   | а       | Work these out.                                                    |
| $10^{2} = 100^{2} = 100^{2}$        |                     |         | i $2 \times 10^{-1}$ $2 \times 10^{-2}$ $2 \times 10^{-3}$         |
| $10^{1} = 10$                       |                     |         | ii $84 \times 10^{-1}$ $84 \times 10^{-2}$ $84 \times 10^{-3}$     |
| $\div 10 > 10^{\circ} = $           |                     |         | iii $7.9 \times 10^{-1}$ $7.9 \times 10^{-2}$ $7.9 \times 10^{-2}$ |
| $\div 10$ $10^{-1} = 0.1$ $\div 10$ |                     | b       | Complete each statement.                                           |
| $10^{-2} = $                        |                     |         | Multiplying by 10 <sup>-1</sup> is the same as dividing by once    |
| $10^{-4} = $                        |                     |         | Multiplying by 10 <sup>-2</sup> is the same as<br>dividing by 10   |
|                                     |                     |         | Multiplying by 10 <sup>-3</sup> is the same as dividing by 10      |

#### Worked example

A flea weighs around 0.000 087 kg.

Write this number in standard form.

#### Solution

A is always between 1 and 10.

0.000 087 in standard form is  $8.7 \times 10^{-5}$ 

Use a place value diagram to help you work out what the power of 10 should be.

| 0 | • | t | h | th | t th | t th | m |
|---|---|---|---|----|------|------|---|
| 8 | • | 7 |   |    |      |      |   |
| 0 | • | 0 | 0 | 0  | 0    | 8    | 7 |

 $0.000087 = 8.7 \div 10 \div 10 \div 10 \div 10 \div 10$ 

$$= 8.7 \times 10^{-5}$$

So the flea weighs  $8.7 \times 10^{-5}$  kg

| 1 | Remember: dividing by 10 is the same as multiplying by 10 <sup>-1</sup> .                                         |
|---|-------------------------------------------------------------------------------------------------------------------|
|   | You have to divide 8.7 by ten five times to get 0.000 087.                                                        |
|   | Dividing by 10 five times is the same as multiplying by $10^{-5}$ .                                               |
|   | You don't need to draw a place value diagram each time.                                                           |
|   | You have moved the digits 5 places to get the decimal point between the 8 and the 7, so you multiply by $10^{-5}$ |
|   | $0.000087 = 8.7 \times 10^{-5}$                                                                                   |
|   |                                                                                                                   |

#### Converting numbers from standard form

You also need to be able to convert from standard form back to ordinary numbers.

Remember when the power of 10:

- is positive, then the number is BIG
- is negative, then the number is SMALL.

#### Worked example

Convert these numbers from standard form to ordinary numbers.

**a**  $5.67 \times 10^4$  **b**  $3.08 \times 10^{-6}$ 

#### **Solution**

**a**  $5.67 \times 10^4$  means you multiply 5.67 by 10 four times.

The digits move 4 places.

# 56700.

So 5.67 × 10<sup>4</sup> = 56 700 ←

A positive power means the number is big!

**b**  $3.08 \times 10^{-6}$  means you divide 3.08 by 10 six times.

The digits move 6 places.

## 0.00000308

So  $3.08 \times 10^{-6} = 0.00000308$ 

A negative power means the number is small!

# Powers and indices

## 1.2 Now try these

|          | Ba | and 1 questions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|----------|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          | 1  | Write each of these numbers as a power of 10.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| luer     |    | a 1000000 b 10000000 c 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| হ        |    | d 0.01 e 0.001 f one hundred thousand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Τ        |    | g one thousand million <b>h</b> one ten thousandth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|          | 2  | Write each of these as an ordinary number.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|          |    | <b>a</b> $10^5$ <b>b</b> $10^{10}$ <b>c</b> $10^{-1}$ <b>d</b> $10^{-2}$ <b>e</b> $10^{-3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|          | 3  | Work out these multiplications. Part <b>a</b> has been answered for you.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|          | -  | <b>a</b> $2.6 \times 10^3 = 2.6 \times 1000 = 2600$ <b>b</b> $4 \times 10^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|          |    | <b>c</b> $4.8 \times 10^5$ <b>d</b> $1.3 \times 10^4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|          |    | <b>e</b> $2.4 \times 10^7$ <b>f</b> $9.3 \times 10^6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| P        | 4  | Copy and complete these. Fill in the missing numbers.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ople.    |    | <b>a</b> $10^2 = 500$ <b>b</b> $10^3 = 3000$ <b>c</b> $6 \times 10^{-1} = 6000000$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| s me     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| olvir    |    | <b>d</b> $10 = 350$ <b>e</b> $4.2 \times 10^{-1} = 42000$ <b>f</b> $10 = 450000$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| <u>w</u> | R/ | and 9 questions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|          |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 문        | 5  | These numbers are in standard form. Write them as ordinary numbers.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ency     |    | <b>a</b> $2 \times 10^3$ <b>b</b> $7 \times 10^6$ <b>c</b> $4.2 \times 10^5$ <b>d</b> $7.1 \times 10^7$ <b>e</b> $8.6 \times 10^9$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Υ.       | 6  | Write these numbers in standard form.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|          |    | a 200 o 5000 c 7000000 d 3600 e 7200000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|          |    | <b>a</b> $2 \times 10^{-1}$ <b>b</b> $4 \times 10^{-2}$ <b>c</b> $E \times 10^{-3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          | 8  | $\begin{array}{c} a & 5 \\ \hline \end{array} \\ \hline $ \\ \hline } \\ \hline \\ \\ \hline \end{array} \\ \hline \\ \\ \hline \end{array} \\ \hline \\ \\ \hline \end{array} \\ \hline \end{array} \\ \hline  \\ \hline \Biggr \\ \hline \\ \\ \hline \end{array} \\ \hline \\ \\ \hline \end{array} \\ \hline \\ \\ \hline \end{array} \\ \hline \end{array} \\ \hline \\ \\ \hline \end{array} \\ \\ \hline \\ \\ \hline \end{array} \\ \\ \\ \hline \end{array} \\ \\ \hline \end{array} \\ \\ \\ \hline \end{array} \\ \\ \hline \end{array} \\ \\ \\ \hline \end{array} \\ \\ \hline \end{array} \\ \\ \\ \hline \end{array} \\ \\ \hline \\ \\ \hline \end{array} \\ \\ \\ \\ |
|          |    | Fill in the missing numbers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|          |    | $\nabla x = \frac{1}{2} + \frac{1}{2} $                                                                |
|          |    | <b>a</b> $4 \times 10^{-1} = 0.4$ <b>b</b> $10^{-1} = 0.006$ <b>c</b> $3 \times 10^{-1} = 0.03$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Pro      | 9  | Write these as ordinary numbers.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| blen     |    | a The length of a human chromosome is $5 \times 10^{-9}$ m.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| los I    |    | The conclusion of an electron is $9.11 \times 10^{-31}$ kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ving     |    | Write these numbers in standard form                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Ψ        |    | a The distance between the Farth and the Moon is 239 000 miles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|          |    | <ul> <li>A £5 note is 0.000 22 m thick.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|          |    | c Quartz fibre has a diameter of 0.000 001 m.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|          |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|          | Bá | and 3 questions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|          |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Re       | 0  | a Write the correct inequality symbol < or > between each of these pairs of numbers.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Reasor   | 0  | aWrite the correct inequality symbol < or > between each of these pairs of numbers.i $3 \times 10^4$ 3 $\times 10^5$ ii4.6 $\times 10^6$ 5.8 $\times 10^6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

Explain how you can compare the sizes of numbers written in standard form. b

# **Copyright: Sample material**

Key Stage 3 Mastering Mathematics: Book 3

12 Write these numbers in order, starting with the smallest.

#### $4.56 \times 10^5$ $3.4 \times 10^4$ 563 000 $7.4 \times 10^6$

(3) Correct each of these pieces of homework below.

For each question say who has got it right and explain where the other has gone wrong.

 $\begin{tabular}{l} \hline $\mathbf{Samuel}$ \\ Write 3800 in standard form $$3.8 \times 10^2$ \\ Write 0.00000678 in standard form $$6.78 \times 10^{-6}$ \\ Write 5 \times 10^7 \mbox{ as an ordinary number $$50 000000$ \\ Write 5.4 10^{-5} \mbox{ as an ordinary number $$9600000$ \\ Write 9.6 \times 10^{-5} \mbox{ as an ordinary number $$9600000$ \\ Put in order of size, small to big: $$2.6 \times 10^4, 2.9 \times 10^2, 2.7 \times 10^{-3}$ $$2.6 \times 10^4, 2.9 \times 10^2, 2.7 \times 10^{-3}$ $$Double 6.7 \times 10^5$ $$1340000$ \\ \hline \end{tabular}$ 



b

 $\mathbf{4}$  a i Explain how to work out 2000  $\times$  300 in your head.

- ii Now write your answer in standard form.
- i Write the answer to  $(2 \times 10^3) \times (3 \times 10^2)$  in standard form.
- Look carefully at your answer.
- ii How is the number worked out?
- iii How is the power of 10 worked out?
- c Work out
  - i  $[4 \times 10^2] \times [2 \times 10^3]$

ii  $(1.2 \times 10^4) \times (3 \times 10^2)$ 

- d Explain how to multiply numbers when they are written in standard form.
- Use your method to work out  $(3 \times 10^{-2}) \times (4 \times 10^{-3})$ . Make sure you write your answer in standard form.
- **1** The problems below can be solved by either multiplying or by dividing.

Choose the correct operation for each one and then answer the question.

- A mouse weighs 1.5 × 10<sup>-2</sup> kg.
   An owl eats 1000 mice in a year.
   What weight of mice is this?
- **b** The speed of sound is  $3.3 \times 10^2$  metres per second. How far does sound travel in an hour?
- c A grain of salt weighs  $2 \times 10^{-5}$  grams. How many grains of salt are there in a 750 gram packet?
- **d** A packet of 500 sheets of paper is 55 mm thick. How thick is each sheet of paper?
- The average number of clover leaves in a square metre of lawn is  $1.5 \times 10^3$ . Estimate the number of clover leaves in a park with  $5 \times 10^4$  m<sup>2</sup> of lawns.

00 (b

820 000

16 The galaxy that the Earth is in is called the Milky Way.

The Milky Way is about 120 000 light years across.

The Earth is around 27 000 light years from the centre of the Milky Way.

A light year is the distance that light can travel in a year and it is  $9.46 \times 10^{15}$  metres.

Imagine a spaceship that can travel at half the speed of light. а

It sets off from the Earth towards the centre of the Milky Way. How long would it take?

- b How many generations of astronauts do you think it would take?
- С Assuming an original crew of 20 people, how many people do you think would arrive at the centre of the Milky Way?

Which of these numbers are not in standard form? Why/why not?

- Where possible re-write the number so it is in standard form.
- $0.3 \times 10^{4}$ а  $4 \times 10^{0.5}$

d

b  $7 \times 10^{-3}$ 10<sup>9</sup> 0

 $10.1 \times 10^{-4}$ С  $9.9 \times 10^{100}$ f

# **1.3 Prime factorisation**

## Skill checker

| 1 Look at the numbers in this box. |    |    |     |    |    |  |  |
|------------------------------------|----|----|-----|----|----|--|--|
|                                    | 9  | 7  | 51  | 36 | 20 |  |  |
|                                    | 16 | 37 | 2   | 27 | 24 |  |  |
|                                    | 11 | 21 | 100 | 1  | 42 |  |  |
|                                    | 8  | 64 | 6   | 12 | 5  |  |  |

(2) Write down the first ten prime numbers.

# Remember Prime numbers are numbers that have exactly 2 factors: 1 and the number itself.

Write down all the numbers from the box that are

square а

- b cubes
- С factors of 36
- d prime
- multiples of 6 e
- f factors of 100 and prime.

# Writing numbers as a product of prime factors

Remember that the factors of a number divide into it exactly. For example, the factors of 12 are 1, 2, 3, 4, 6 and 12 A prime factor is a factor of a number that is also prime.

The prime factors of 12 are 2 and 3.

#### Remember

1 is not a prime number.

Activity

Show that every number between 2 and 20 is either prime or can be made by multiplying prime numbers together.

| Number | Answer    |  |  |
|--------|-----------|--|--|
| 2      | 2 (prime) |  |  |
| 3      | 3 (prime) |  |  |
| 4      | 2 × 2     |  |  |
| 5      | 5 (prime) |  |  |
| 6      | 2 × 3     |  |  |
| 7      |           |  |  |

In the activity you found that every number up to 20 is either prime or can be made by multiplying together prime numbers. In fact, every whole number above 1 is either prime or can be made by multiplying together prime numbers.

This is known as the Fundamental Theorem of Arithmetic.

For example,  $60 = 2 \times 2 \times 3 \times 5$ 

 $=2^2 \times 3 \times 5$ 

This is called a product **of prime factors**. Remember: product means multiply.

The next example shows you how to use a factor tree to help you write a number as a product of prime factors.

#### Worked example

Write 1540 as a product of prime factors.

#### **Solution**

Using a factor tree:



#### Finding the HCF and LCM of two numbers

The highest common factor (HCF) of two numbers is the largest factor that they share.

You can find the HCF of two numbers by listing their factors, as in this example for 20 and 30.

Factors of 20: 1 2 4 5 10 20

Factors of 30:1 2 3 5 6 10 15 30

The highest number in both lists is 10 so this is the HCF of 20 and 30.

The lowest common multiple (LCM) of two numbers is the lowest multiple that they share.

You can find the LCM of two numbers by listing their multiples, as in this example, again using 20 and 30.

Multiples of 20: 20 40 60 80 100

Multiples of 30: 30 60 90 120 150

The lowest number in both lists is 60 so this is the LCM of 20 and 30.

The next example shows you how to use a Venn diagram to help you find the HCF and LCM of two numbers.

#### Worked example

- a Show that 270 written as a product of prime factors is  $2 \times 3^3 \times 5$ .
- **b** Write 315 as a product of prime factors.
- C Find the HCF and LCM of 270 and 315.

#### Solution

#### a $2 \times 3^3 \times 5 = 2 \times 27 \times 5$

$$=10 \times 27 = 270$$
  
b 315
  
5 63
  
7 9
  
63 + 5 = 63
  
7 9
  
63 + 7 = 9
  
3 3 4 9 = 3 \times 3

Multiply together all the prime (circled) numbers in the factor tree:

 $315 = 5 \times 7 \times 3 \times 3$ 

$$=3^2 \times 5 \times 7$$

**C**  $270 = 2 \times 3 \times 3 \times 3 \times 5$  and  $315 = 3 \times 3 \times 5 \times 7$ Placing these factors in a Venn diagram gives



3, 3 and 5 are common factors so they go in the intersection. The intersection is the middle/crossover of the two circles.

,00

The HCF is found by multiplying the numbers in the intersection:



both numbers so when you multiply them together you'll get the highest common factor

These are the common factors of

The LCM is found by multiplying all of the numbers in the Venn diagram: 315

$$\underbrace{2\times3\times3\times3\times5}_{270}$$

Remember Writing a number as a product of its prime factors means writing all of the prime factors as a multiplication. Use index notation to write a product of prime factors neatly. Note Venn diagrams are covered in full in chapter 15 (unit 15.2).

> Check: 1890 = 6 x 315 which means 1890 is a multiple of 315 and  $1890 = 270 \times 7$  which means 1890 is also a multiple of 270. Can you see why this method works?



16

# 1.3 Now try these

| <b>D</b> | 4 | <br> |  |
|----------|---|------|--|
|          |   |      |  |
| • • •    |   |      |  |
| _        |   |      |  |

Maril. 

Fluency

Fluency

Reasoning

| U  | Wor  | k out these.                        |         |                       |         |                            |            |                        |       |                |
|----|------|-------------------------------------|---------|-----------------------|---------|----------------------------|------------|------------------------|-------|----------------|
|    | а    | $3 \times 5 \times 7$               | b       | 3 	imes 7 	imes 11    | С       | $2 \times 3 \times 5$      | d          | $2 \times 3 \times 11$ | e     | 2 <sup>3</sup> |
|    | f    | 24                                  | g       | $3^2 \times 5$        | h       | $2^{2} \times 3$           | i          | $2^{2} \times 5^{2}$   |       |                |
| 2  | а    | What are the first                  | ten r   | multiples of 5?       |         |                            |            |                        |       |                |
|    | b    | What are the first                  | ten r   | multiples of 6?       |         |                            |            |                        |       |                |
|    | С    | What is the lowes                   | t con   | nmon multiple (LCI    | M) of ! | 5 and 6?                   |            |                        |       |                |
| 3  | а    | List the first eight                | t mult  | tiples of 30.         |         |                            |            |                        |       |                |
|    | b    | List the first eight                | t mult  | tiples of 24.         |         |                            |            |                        |       |                |
|    | С    | What is the lowes                   | t con   | nmon multiple (LCI    | M) of 3 | 30 and 24?                 |            |                        |       |                |
| 4  | Find | d the lowest comm                   | on m    | ultiple (LCM) of ea   | ch pai  | r of numbers.              |            |                        |       |                |
|    | а    | 3 and 5                             | b       | 4 and 6               | С       | 9 and 12                   |            |                        |       |                |
| 5  | а    | What are the fact                   | ors of  | f 12?                 |         |                            |            |                        |       |                |
|    | b    | What are the fact                   | ors of  | f 16?                 |         |                            |            |                        |       |                |
|    | С    | What is the highe                   | st co   | mmon factor (HCF      | ) of 12 | 2 and 16?                  |            |                        |       |                |
| 6  | Find | d the HCF of each p                 | air of  | numbers.              |         |                            |            |                        |       |                |
|    | а    | 15 and 20                           | b       | 18 and 24             |         |                            |            |                        |       |                |
| D  |      |                                     |         |                       |         |                            |            |                        |       |                |
| Do | anc  | rz questions                        |         |                       |         |                            |            |                        |       |                |
| 7  | а    | Copy and comple                     | te thi  | s diagram to find t   | he pri  | me factors of 18           | •          | 18                     |       |                |
|    | b    | Write 18 as the p                   | roduc   | t of prime factors.   |         |                            |            |                        |       |                |
|    | С    | Rewrite your answ                   | wer u   | sing indices.         |         |                            |            | 2 9                    |       |                |
| 8  | а    | Complete this list                  | ofth    | e factors of 60.      |         |                            |            |                        |       |                |
|    |      | 1, 2, 3,, 60                        |         |                       |         |                            |            | U                      | 3     |                |
|    | b    | Write a list of the                 | prime   | e factors of 60.      |         |                            |            |                        |       |                |
| _  | С    | Write 60 as a proc                  | duct o  | of prime factors.     |         |                            |            |                        |       |                |
| 9  | Drav | w factor trees to w                 | rite tł | nese numbers as p     | roduc   | ts of the prime f          | actors.    |                        |       |                |
|    | а    | 12                                  | b       | 8                     | С       | 15                         | d          | 20                     | e     | 30             |
| 10 | Writ | e each of these nu                  | mbei    | rs as a product of it | ts prin | ne factors.                |            |                        |       |                |
|    | Writ | e your answers us                   | ing ir  | ndices.               |         |                            |            |                        |       |                |
| _  | а    | 50                                  | b       | 140                   | С       | 84                         | d          | 36                     | e     | 200            |
| 0  | Find | d the <b>i</b> LCM and <b>ii</b> HC | F of t  | hese pairs of numb    | pers by | y first finding the        | ir prime   | factors and then us    | singa | Venn diagram.  |
|    | а    | 64 and 72                           |         | <b>b</b> 2            | 20 ano  | 35                         |            | <b>c</b> 16 and 2      | 8     |                |
| 12 | а    | Find the HCF of 9                   | ) and   | 360.                  |         |                            |            |                        |       |                |
|    | b    | Find the LCM of 9                   | 0 anc   | 360.                  |         |                            |            |                        |       |                |
|    | С    | What do you notic                   | ce ab   | out your answers t    | o part  | ts <b>a</b> and <b>b</b> ? |            |                        |       |                |
|    |      | Find another pair                   | of nu   | imbers with this pa   | attern  |                            |            |                        |       |                |
| 13 | а    | Find a number wi                    | th pri  | me factors of only    | 13, 1   | 7 and 19.                  |            |                        |       |                |
|    | b    | Find a number be                    | twee    | n 100 and 200 wit     | h prim  | ne factors that ar         | re all eve | en.                    |       |                |
|    | С    | Find a pair of num                  | bers    | that have prime fa    | octors  | of only 2, 3 and           | 5.         |                        |       |                |
|    |      | One of your pair s                  | hould   | d be a two-digit nur  | mber a  | and one should b           | e a thre   | e-digit number.        |       |                |

#### **Band 3 questions**

- (4) a Show the prime factors of 24 and 90 on a Venn diagram.
  - **b** Use the Venn diagram to find the HCF and LCM of 24 and 90.
- 15 Pete makes rosewood jewellery.

Pieces of wood are joined together to make bracelets, necklaces and anklets.

All the pieces of wood are the same length.

Look at the poster.

What is the greatest possible length for one of the pieces of wood?

- **16** Find the LCM and HCF of 90, 75 and 60.
- 17 These dials are set at 0:



After the left dial has been turned through one complete turn they look like this:



- a Draw a diagram to show what they will look like after two complete turns of the left dial.
- b How many complete turns of the left dial are needed before the first two dials are both set to 0?
- c How many complete turns of the left dial are needed before all three dials are again set to 0?

| BUSES AVAI          |
|---------------------|
| <br>Demonstran over |

18

| BUSES AVAILABLE FROM THIS STOP |                   |         |         |         |  |  |  |
|--------------------------------|-------------------|---------|---------|---------|--|--|--|
|                                |                   | 1b      | 3a      | 4       |  |  |  |
|                                | Departing every   | 5 mins  | 8 mins  | 10 mins |  |  |  |
| **                             | • First departure | 9.00 am | 9.00 am | 9.00 am |  |  |  |

All three buses leave together at 9.00 a.m. When is the next time that all three buses leave together?

## Key words

#### Here is a list of the key words you met in this chapter.

| Cube         | Cube root                    |
|--------------|------------------------------|
| ndices       | Lowest common multiple (LCM) |
| Product      | Square                       |
| ′enn diagram |                              |

Factor Multiple Square root Highest common factor (HCF) Power Prime Standard form

Use the glossary at the back of this book to check any you are unsure about.

| Pete's jewe                                               | llery                            |  |  |  |  |
|-----------------------------------------------------------|----------------------------------|--|--|--|--|
| Bracelets<br>Short Necklaces<br>Long Necklaces<br>Anklets | 18 cm<br>48 cm<br>54 cm<br>24 cm |  |  |  |  |
| GUARANTEED TO<br>BRING YOU LUCK                           |                                  |  |  |  |  |

# **Review exercise: powers and indices**

**Band 1 questions** 

Fluency

Reasoning

Problem solving

Fluency

Fluency

Problem solving

Fluency

 Multiply out these. a  $2^2 \times 3^2$  $3 \times 5^2$  $2 \times 7^{2}$  $2^{3} \times 3^{3}$ C 2 Write 64 as a power of а 2 С 8 64 h 3 Write the number in each statement as a power of 10. There are 100 steps to the top of the tower. а The winner won by just 0.1 of a second. b The car costs £10 000. С 4 In the number  $4.12 \times 10^6$ , the first digit has a value of 4 million or 4 000 000. The numbers in the table are written in standard form. Copy the tables and fill in the value of the first digit for each number. а b Number Value of first digit Number Value of first digit  $2 \times 10^{-2}$  $6.1 \times 10^{4}$  $3.52 \times 10^{4}$  $1.46 \times 10^{-2}$  $3 \times 10^{-4}$  $2.9 \times 10^{7}$  $6.2 \times 10^{-4}$  $1.352 \times 10^{7}$  $4.5 \times 10^{9}$  $5 \times 10^{-6}$  $1.236 \times 10^{9}$  $3.21 \times 10^{-6}$ Find the LCM and HCF of these pairs of numbers by first finding their prime factors. 5 8 and 14 а b 30 and 35 С 18 and 24 **Band 2 questions** 6 Find the values of these.  $(2^2)^3$ **b**  $2^2 \times 2^3$  $2^{2} + 2^{3}$  $2^{3} \times 2^{3}$ а С d  $2^5 \div 2^3$ **2**<sup>5</sup>  $2^{3} \times 2^{3}$  $2^{99} \div 2^{96}$ f e q h  $[2 \times 2 \times 2 \times 2 \times 2]$ 7 Find the LCM and HCF of these pairs of numbers by first finding their prime factors. 80 and 100 **b** 210 and 240 а 8 Work out the missing digits in these. There may be more than one answer. =25 а 6 = С 9 Write these numbers in standard form. 2000 **b** 32 000 1450 d 36000000 а С D Write these numbers in standard form. 0.067 b 0.00341 0.000006 d 0.23 а С D Write these as ordinary numbers.  $2 \times 10^{3}$ **c**  $4.56 \times 10^4$  $5.6 \times 10^{5}$ а **b**  $1.4 \times 10^2$ d **g** 8.32 × 10<sup>-7</sup>  $3.576 \times 10^{12}$  $2.7 \times 10^{-3}$  $4.9 \times 10^{-10}$ e f h



# KEY STAGE 3 Mastering Mathematics

800A

Second Edition

w: hoddereducation.co.uk

Build fluency, reasoning and problem-solving skills with hundreds of expertly written questions that help to boost progression, alongside fun activities.

- Recap skills and topics throughout, ensuring a smooth transition to GCSE
- Build confidence with fun starter activities and warm-up questions
- Secure and deepen every pupil's understanding with differentiated questions and worked examples that follow the 'do it, secure it, deepen it' Mastery structure
- Develop reasoning skills through carefully constructed questions and the use of non-examples, where pupils identify mistakes in sample answers
- Track progress through review questions, so that you can be confident pupils are prepared for GCSE

#### Proven to boost progress – adopting a flexible Mastery approach

Written by subject specialists and UK Mastery-trained teachers for the National Curriculum, this book follows a Mastery learning approach that has been shown to improve progression by breaking down complex concepts into small steps.

This course is designed for flexibility with opportunities to introduce Mastery by using activities such as manipulatives, including bar modelling and algebra tiles, and the 'concrete, pictorial, abstract' approach where appropriate.

