
Cambridge
International AS & A Level

David Watson
Helen Williams

Computer
Science

25
YEARS

W

orking for over

C
am

b
rid

g
e Assessment Internatio

na
l E

d
u

ca
tio

n

WITH

SAMPLE MATERIAL

We are working with Cambridge Assessment
International Education to gain endorsement
for this forthcoming title

Develop computational thinking and ensure full coverage of the revised Cambridge
International AS & A Level Computer Science syllabus (9618) with this comprehensive
Student’s Book written by experienced authors and examiners.

It is supported by a Programming Skills Workbook and a Study and Revision Guide, as well as by
Student and Whiteboard eTextbook editions and an Online Teacher’s Guide.

Cambridge International AS & A Level
Computer Science Student Book

ISBN 9781510457591 March 2019

Cambridge International AS & A Level
Computer Science Programming Skills Workbook

ISBN 9781510457683 June 2019

Cambridge International AS & A Level
Computer Science Student eTextbook

ISBN 9781510457614 April 2019

Cambridge International AS & A Level
Computer Science Whiteboard eTextbook

ISBN 9781510457621 March 2019

Cambridge International AS & A Level
Computer Science Online Teacher’s Guide

ISBN 9781510457652 July 2019

Online Teacher’s Guide
Deliver more inventive and flexible Cambridge International AS & A Level lessons with a
cost-effective range of online resources.
» Save time planning and ensure syllabus coverage with a scheme of work, lesson plans,

teaching activities and worksheets, and expert teaching guidance.
» Improve students’ confidence with quizzes and exam-style questions including sample

answers.
» Consolidate knowledge with answers to all questions in the Student Book.

The Online Teacher’s Guide is available via the Dynamic Learning platform.
To find out more and sign up for a free, no obligation Dynamic Learning Trial,
visit www.hoddereducation.com/dynamiclearning.

We’re here to help!

If we can help with questions, and to find out more, please contact us at
international.sales@hoddereducation.com.

We are working with Cambridge Assessment International Education to gain endorsement for
these forthcoming titles

The Study and Revision Guide is not going through the Cambridge International endorsement process

Cambridge
International
AS & A Level

David Watson
Helen Williams

Computer
Science

Questions from the Cambridge International AS & A Computer Science papers are reproduced by permission of
Cambridge Assessment International Education.

Cambridge Assessment International Education bears no responsibility for the example answers to questions
taken from its past question papers which are contained in this publication.

Unless otherwise acknowledged, the questions, example answers and comments that appear in this book were
written by the authors.

The publishers would like to thank the following who have given permission to reproduce the following material
in this book:

Figure 9.1 Map data © 2018 Google, Imagery © 2018 Landsat/Copernicus

Every effort has been made to trace and acknowledge ownership of copyright. The publishers will be glad to
make suitable arrangements with any copyright holders whom it has not been possible to contact.

Although every effort has been made to ensure that website addresses are correct at time of going to press,
Hodder Education cannot be held responsible for the content of any website mentioned in this book. It is
sometimes possible to find a relocated web page by typing in the address of the home page for a website in the
URL window of your browser.

Hachette UK’s policy is to use papers that are natural, renewable and recyclable products and made from
wood grown in sustainable forests. The logging and manufacturing processes are expected to conform to the
environmental regulations of the country of origin.

Orders: please contact Bookpoint Ltd, 130 Park Drive, Milton Park, Abingdon, Oxon OX14 4SE. Telephone:
(44) 01235 827827. Fax: (44) 01235 400401. Email education@bookpoint.co.uk Lines are open from 9 a.m. to
5 p.m., Monday to Saturday, with a 24-hour message answering service. You can also order through our website:
www.hoddereducation.com

© David Watson and Helen Williams 2019

First published 2019 by
Hodder Education,
An Hachette UK Company
Carmelite House
50 Victoria Embankment
London EC4Y 0DZ

www.hoddereducation.com

Impression number 10 9 8 7 6 5 4 3 2 1

Year 2023 2022 2021 2020 2019

All rights reserved. Apart from any use permitted under UK copyright law, no part of this publication may be
reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and
recording, or held within any information storage and retrieval system, without permission in writing from the
publisher or under licence from the Copyright Licensing Agency Limited. Further details of such licences (for
reprographic reproduction) may be obtained from the Copyright Licensing Agency Limited, www.cla.co.uk

Cover photo © Terrance Emerson - stock.adobe.com

Illustrations by Aptara Inc. and Hodder Education

Typeset by Hodder Education

A catalogue record for this title is available from the British Library.

ISBN: 9781510457591

5

Contents

Introduction

AS LEVEL

1 Information representation
1.1 Data representation
1.2 Multimedia
1.3 File compression

2 Communication
2.1 Networks including the internet

3 Hardware
3.1 Memory and storage
3.2 Logic gates and logic circuits

4 Processor fundamentals
4.1 Central processing unit (CPU) architecture
4.2 Assembly language
4.3 Bit manipulation

5 System software
5.1 Operating system
5.2 Language translators

6 Security, privacy and data integrity
6.1 Security, privacy and data integrity
6.2 Data validation and data verification

7 Ethics and ownership
7.1 Legal, moral, ethical and cultural implications
7.2 Copyright issues
7.3 Artificial intelligence (AI)

8 Databases
8.1 Database concepts
8.2 Database management systems (DBMs)
8.3 Data definition language (DDL) and data manipulation language (DML)

CO
N

TE
N

TS

6

9 Algorithm design and problem-solving
9.1 Computational thinking skills
9.2 Algorithms

10 Data types and structures
10.1 Data types and records
10.2 Arrays
10.3 Files
10.4 Introduction to abstract data types (ADT)

11 Programming
11.1 Programming basics
11.2 Constructs
11.3 Built-in-functions
11.4 Structured programming

12 Software development
12.1 Program development lifecycle
12.2 Program design
12.3 Program testing and maintenance

A LEVEL

13 Data representation
13.1 User-defined data types
13.2 File organisation and access
13.3 Floating-point numbers, representation and manipulation

14 Communication and internet technologies
14.1 Protocols
14.2 Circuit switching, packet switching

15 Hardware
15.1 Processors and parallel processing
15.2 Boolean algebra and logic circuits

16 System software
16.1 Purposes of an operating system (OS)
16.2 Translation software

17 Security
17.1 Encryption, encryption protocols and digital certificates

7

18 Artificial intelligence
18.1 Artificial intelligence

19 Computational thinking and problem solving
19.1 Algorithms
19.2 Recursion

20 Further programming
20.1 Programming paradigms
20.2 File processing and exception handling

Glossary

Index

8

9
A

LG
O

R
IT

H
M

 D
ES

IG
N

 A
N

D
 P

R
O

B
LE

M
-S

O
LV

IN
G

 9

In order to design a computer system that performs a specific task or solves a
given problem, the task or problem has to be rigorously defined and set out,
showing what is going to be computed and how it is going to be computed.

This chapter introduces tools and techniques that can be used to design
a software solution to work with associated computer hardware to form a
computer system.

Practice is essential to develop skills in computational thinking. Designs shown
with pseudocode or flowcharts can be traced to check if the proposed solution
works, but the best way to actually test that a computer system works is to
code it and use it or, even better, get somebody else to use it. Therefore,
practical programming activities, alongside other activities, will be suggested
at every stage to help reinforce the skills being learnt and develop the skill of
programming.

The programming languages to use are:

» Java » Python » VB.NET.

9.1 Computational thinking skills
Computational thinking is used to study a problem and formulate an effective
solution that can be provided using a computer. There are several techniques
used in computational thinking, including abstraction, decomposition,
algorithms and pattern recognition.

In this chapter, you will learn about:

★ computational thinking skills (abstraction and decomposition)
★ how to write algorithms that provide solutions to problems using

structured English flowcharts, and pseudocode.

WHAT YOU SHOULD ALREADY KNOW
Can you answer these six questions and
complete the following activity?
1 What is a procedure?
2 What is a function?
3 What is an algorithm?
4 What is structured English?
5 What is a flowchart?
6 What is pseudocode?

Write an algorithm using a flowchart to find
the average of a number of integers. Both the
number of values and each integer are to be
input, and the average is to be output.

Use the flowchart of your algorithm to write the
algorithm in pseudocode.

Use your pseudocode to write and test a
program that includes a function to solve the
problem.

Algorithm design and
problem-solving

9

9.2
Algorithm

s

9
9.1.1 Using abstraction
Abstraction is an essential part of computational thinking. It enables computer
scientists to develop clear models for the solution to complex problems.
Abstraction involves extracting information that is essential, while ignoring
what is not relevant for the provision of a solution, only including what is
necessary to solve that problem.

Many items in common, everyday use are the result of using abstraction; for
example, maps, calendars and timetables. Maps use abstraction to show what is
required for a specific purpose; for example, a road map should only show the
necessary detail required to drive from one place to another.

▲ Figure 9.1 Road map and satellite view

9.1.2 Using decomposition
Decomposition is also an essential part of computational thinking. It enables
computer scientists to divide a complex problem into smaller parts that can be
further subdivided into even smaller parts until each part is easy to examine
and understand, and a solution can be developed.

Pattern recognition is used to identify those parts that are similar and could
use the same solution. This leads to the development of reusable program code
in the form of subroutines, procedures and functions.

9.2 Algorithms
9.2.1 Writing algorithms that provide solutions to problems
There are several methods of writing algorithms before attempting to program
a solution. Here are three frequently used methods.

» Structured English is a method of showing the logical steps in an
algorithm, using an agreed subset of straightforward English words for
commands and mathematical operations to represent the solution. These
steps can be numbered.

» A flowchart shows diagrammatically, using a set of symbols linked together
with flowlines, the steps required for a task and the order in which they
are to be performed. These steps, together with the order, are called an
algorithm. Flowcharts are an effective way to show the structure of an
algorithm.

» Pseudocode is a method of showing the detailed logical steps in an
algorithm, using keywords, identifiers with meaningful names, and
mathematical operators to represent a solution. Pseudocode does not need to
follow the syntax of a specific programming language, but it should provide
sufficient detail to allow a program to be written in a high-level language.

Key terms
Abstraction – the
process of extracting
information that
is essential, while
ignoring what is not
relevant, for the
provision of a solution.

Decomposition – the
process of breaking a
complex problem into
smaller parts.

Pattern recognition –
the identification of
parts of a problem that
are similar and could
use the same solution.

Algorithm – an
ordered set of steps
to be followed in the
completion of a task.

Structured English – a
method of showing
the logical steps in
an algorithm, using
an agreed subset of
straightforward English
words for commands
and mathematical
operations.

Flowchart – a
diagrammatic
representation of an
algorithm.

Pseudocode – a
method of showing
the detailed logical
steps in an algorithm,
using keywords,
identifiers with
meaningful names,
and mathematical
operators.

Stepwise refinement –
the practice of
subdividing each part of
a larger problem into a
series of smaller parts,
and so on, as required.

10

9
A

LG
O

R
IT

H
M

 D
ES

IG
N

 A
N

D
 P

R
O

B
LE

M
-S

O
LV

IN
G

9
Below, you will see the algorithm from the activity written using each of these
three methods.

Structured English

Flowchart

▲ Figure 9.2

ACTIVITY

You have been asked
to write an algorithm
for drawing regular
polygons of any size.

In pairs, divide
the problem into
smaller parts,
identifying those
parts that are
similar.

Write down your
solution as an
algorithm in
structured English.

Swap your algorithm
with another pair.

Test their algorithm
by following their
instructions to
draw a regular
polygon. Discuss
any similarities and
differences between
your solutions.

1 Ask for the number of values

2 Loop that number of times

3 Enter a value in loop

4 Add the value to the Total in loop

5 Calculate and output average

Start

End

Total = 0
Counter = 1

Total = Total + Value
Counter = Counter + 1

Average =
Total/Number

OUTPUT "Enter the
number of values

to average"

OUTPUT "The average
of ", Number, " values

is ", Average

INPUT
Number

OUTPUT
"Enter
value"

INPUT
Value

Counter >
Number?

No

Yes

11

9.2
Algorithm

s

9
Pseudocode

9.2.2 Writing simple algorithms using pseudocode
Each line of pseudocode is usually a single step in an algorithm. The
pseudocode used in this book follows the rules in the Cambridge International
AS & A Level Computer Science Pseudocode Guide for Teachers and is set out
using a fixed width font and indentation, where required, of four spaces,
except for THEN, ELSE and CASE clauses that are only indented by two
spaces.

All identifier names used in pseudocode should be meaningful; for example,
the name of a person could be stored in the variable identified by Name. They
should also follow some basic rules: they should only contain the characters
A–Z, a–z and 0–9, and should start with a letter. Pseudocode identifiers
are usually considered to be case insensitive, unlike identifiers used in a
programming language.

It is good practice to keep track of any identifiers used in an identifier table,
such as Table 9.1.

Identifier name Description
StudentName Store a student name

Counter Store a loop counter

StudentMark Store a student mark

▲ Table 9.1

Pseudocode statements to use for writing algorithms.

To input a value:

To output a message or a value or a combination:

Total ← 0

PRINT "Enter the number of values to average"

INPUT Number

FOR Counter ← 1 TO Number

 PRINT "Enter value"

 INPUT Value

 Total ← Total + Value

NEXT Counter

Average ← Total / Number

PRINT "The average of ", Number, " values is ", Average

INPUT StudentName

OUTPUT "You have made an error"

OUTPUT StudentName

OUTPUT "Student name is ", StudentName

12

9
A

LG
O

R
IT

H
M

 D
ES

IG
N

 A
N

D
 P

R
O

B
LE

M
-S

O
LV

IN
G

9
To assign a value to a variable (the value can be the result of a process or a
calculation):

Operators used in pseudocode assignment statements:

To perform a selection using IF statements for a single choice or a choice
and an alternative, and CASE statements when there are multiple choices or
multiple choices and an alternative:

Counter ← 1

Counter ← Counter + 1

MyChar ← "A"

LetterValue ← ASC(MyChar)

StudentMark ← 40

Percentage ← (StudentMark / 80) * 100

Oldstring ← "Your mark is"

NewString ← OldString & " ninety-seven"

+ Addition

- Subtraction

* Multiplication

/ Division

& String concatenation

← Assignment

ACTIVITY

Identify the values
stored in the
variables when
the assignment
statements in the
example above have
all been completed.
The function ASC
returns the ASCII
value of a character.

IF – single choice

IF MyValue > YourValue

 THEN

 OUTPUT "I win"

ENDIF

IF – single choice with alternative

IF MyValue > YourValue

 THEN

 OUTPUT "I win"

 ELSE

 OUTPUT "You win"

ENDIF

CASE – multiple choices

CASE OF Direction

 "N": Y ← Y + 1

 "S": Y ← Y – 1

 "E": X ← X + 1

 "W": X ← X – 1

ENDCASE

CASE – multiple choices with alternative

CASE OF Direction

 "N": Y ← Y + 1

 "S": Y ← Y – 1

 "E": X ← X + 1

 "W": X ← X – 1

 OTHERWISE : OUTPUT "Error"

ENDCASE

13

9.2
Algorithm

s

9
Relational operators used in pseudocode selection statements:

Programming languages may not always have the same selection constructs as
pseudocode, so it is important to be able to write a program that performs the
same task as a solution given in pseudocode.

To perform iteration using FOR, REPEAT–UNTIL and WHILE loops:

A FOR loop has a fixed number of repeats, the STEP increment is an optional
expression that must be a whole number.

Statements in a REPEAT loop are always executed at least once.

= Equal to

<> Not equal to

> Greater than

> Less than

>= Greater than or equal to

>= Less than or equal to

ACTIVITIES

n In the programming language you have chosen to use, write a short
program to input MyValue and YourValue and complete the single
choice with an alternative IF statement shown on page 12. Note any
differences in the command words you need to use and the construction
of your programming statements compared with the pseudocode.

n In the programming language you have chosen to use, write a short
program to set X and Y to zero, input Direction and complete the
multiple choice with an alternative CASE statement shown on page 12 and
output X and Y. Note any differences in the command words you need to
use and the construction of your programming statements compared to
the pseudocode.

Total ← 0

FOR Counter ← 1 TO 10

 OUTPUT "Enter a number "

 INPUT Number

 Total ← Total + Number

NEXT Counter

OUTPUT "The total is ", Total

FOR Counter ← 1 TO 10 STEP 2

 OUTPUT Counter

NEXT Counter

REPEAT

 OUTPUT "Please enter a positive number "

 INPUT Number

UNTIL Number > 0

14

9
A

LG
O

R
IT

H
M

 D
ES

IG
N

 A
N

D
 P

R
O

B
LE

M
-S

O
LV

IN
G

9

Statements in a WHILE loop may sometimes not be executed.

Programming languages may not always use the same iteration constructs as
pseudocode, so it is important to be able to write a program that performs the
same task as a solution given in pseudocode.

WHILE and REPEAT loops and IF statements make use of comparisons to
decide whether statements within a loop are repeated or a statement or group
of statements are executed. The comparisons make use of relational operators
and the logic operators AND, OR and NOT. The outcome of these comparisons
is always either true or false.

A simple algorithm can be clearly documented using these statements. A more
realistic algorithm to find the average of a number of integers input would
include checks that all the values input are whole numbers and that the number
input to determine how many integers are input is also positive.

This can be written in pseudocode by making use of the function INT(x) that
returns the integer part of x:

Number ← 0

WHILE Number >= 0 DO

 OUTPUT "Please enter a negative number "

 INPUT Number

ENDWHILE

ACTIVITY

In the programming
language you have
chosen to use, write
a short program to
perform the same
tasks as the four
loops shown. Note
any differences in
the command words
you need to use and
the construction of
your programming
statements
compared to the
pseudocode.

REPEAT

 OUTPUT "Please enter a positive number less than fifty"

 INPUT Number

UNTIL (Number > 0) AND (Number < 50)

ACTIVITY

In pseudocode,
write statements to
check that a number
input is between
10 and 20 or over
100. Make use of
brackets to ensure
that the order of
the comparisons is
clear.

Total ← 0

REPEAT

 PRINT "Enter the number of values to average"

 INPUT Number

UNTIL (Number > 0) AND (Number = INT(Number))

FOR Counter ← 1 TO Number

 REPEAT

 PRINT "Enter an integer value "

 INPUT Value

 UNTIL Value = INT(Value)

 Total ← Total + Value

NEXT Counter

Average ← Total / Number

PRINT "The average of ", Number, " values is ", Average

15

9.2
Algorithm

s

9
The identifier table for this algorithm is presented in Table 9.2.

Identifier name Description
Total Running total of integer values entered

Number Number of integer values to enter

Value Integer value input

Average Average of all the integer values entered

▲ Table 9.2

9.2.3 Writing pseudocode from a structured English
description

There are no set rules for writing structured English – the wording just needs
to be unambiguous and easily understandable. Pseudocode is more precise and
usually follows an agreed set of rules.

From a structured English description, the following things need to be possible:

» Any variables that need to be used can be identified and put in an identifier
table – these can be items input or output as the results of calculations.

» Input and output can be identified from the wording used, for example,
Enter, Read, Print, Write.

» Selection can be identified from the wording used, for example, If, Then,
Choose.

» Any iteration required can be identified from the wording used, for example,
Loop, Repeat.

» Any processes needed can be identified from the wording used, for example,
Set, Calculate.

When the identifier table is complete, each structured English statement can be
used to write one or more pseudocode statements, keeping the same order as
the structured English.

Here is an example of an algorithm to calculate a runner’s marathon time in
seconds, using structured English:

This can be used to identify the variables required and complete the identifier
table (Table 9.3).

ACTIVITY

In pseudocode, write an algorithm to set a password for a user when they
have input the same word twice. Then allow the user three attempts to enter
the correct password. Complete an identifier table for your algorithm.

Finally, check your pseudocode algorithm works by writing a short
program from your pseudocode statements using the same names for your
identifiers.

1 Enter time taken to run marathon in hours, minutes and seconds

2 Calculate and store marathon time in seconds

3 Output marathon time in seconds

16

9
A

LG
O

R
IT

H
M

 D
ES

IG
N

 A
N

D
 P

R
O

B
LE

M
-S

O
LV

IN
G

9
Identifier name Description
MarathonHours The hours part of the marathon time

MarathonMinutes The minutes part of the marathon time

MarathonSeconds The seconds part of the marathon time

TotalMarathonTimeSeconds Total marathon time in seconds

▲ Table 9.3

Using these identifiers, each step of the structured English algorithm can be
converted to pseudocode, as demonstrated below.

There are three variables used: MarathonHours, MarathonMinutes and
MarathonSeconds. This is explicitly input and implicitly output as the user
needs to understand what input is required. The pseudocode required is as
follows.

This is a process using the variables MarathonHours, MarathonMinutes
and MarathonSeconds and using an assignment statement to store the
result in TotalMarathonTimeSeconds. The pseudocode required is as
follows.

This is output using the variable TotalMarathonTimeSeconds. The
pseudocode required is as follows.

1 Enter time taken to run marathon in hours, minutes and seconds

OUTPUT "Enter the time you took to run the marathon"

OUTPUT "Enter hours"

INPUT MarathonHours

OUTPUT "Enter minutes"

INPUT MarathonMinutes

OUTPUT "Enter seconds"

INPUT MarathonSeconds

2 Calculate and store marathon time in seconds

TotalMarathonTimeSeconds ← (MarathonHours * 60

 + MarathonMinutes) * 60 + MarathonSeconds

3 Output marathon time in seconds

OUTPUT "Time for marathon in seconds ",
TotalMarathonTimeSeconds

17

9.2
Algorithm

s

9

9.2.4 Writing pseudocode from a flowchart
Flowcharts are diagrams showing the structure of an algorithm using an agreed
set of symbols, as shown in Table 9.4.

Pseudocode Flowchart symbol

INPUT or OUTPUT

IF or CASE

Part of FOR, REPEAT and WHILE

FOR, REPEAT and WHILE

Returning flowline

Assignment ← using a calculation or a pre-defined process
e.g. INT

▲ Table 9.4

Flowcharts can be used to identify any variables required and then complete an
identifier table. Each flowchart symbol can be used to identify and write one
or more pseudocode statements.

ACTIVITY

The structured English description has been extended below to check the
runner’s time against their personal best.

Extend the identifier table and write the extra pseudocode to complete the
algorithm. Then check your algorithm works by writing a short program
from your pseudocode statements using the same names for your
identifiers.

1 Enter time taken to run marathon in hours, minutes and seconds

2 Calculate and store marathon time in seconds

3 Output marathon time in seconds

4 Enter personal best time in seconds

5 If marathon time in seconds is shorter than the personal best time then

6 Reset personal best time in seconds

7 Output the personal best time

18

9
A

LG
O

R
IT

H
M

 D
ES

IG
N

 A
N

D
 P

R
O

B
LE

M
-S

O
LV

IN
G

9
Here is an example of a flowchart of an algorithm that can be used to check an
exam grade:

▲ Figure 9.3

The same algorithm is presented in
pseudocode on the left. Below is the
identifier table:

Identifier name Description
Mark Exam mark

Grade Exam grade

▲ Table 9.5

3 4 5 and 6 form a nested
selection (IF) structure, as each following
statement is part of the ELSE clause. It is
only at 7 that the selection is complete.
The flowchart shows this clearly; the
pseudocode uses indentation to show the
nesting.

Start

End

Grade =
"Distinction"

Grade = "Fail"

Grade = "Pass"

Grade = "Merit"

INPUT Mark

OUTPUT "Enter
your exam mark"

OUTPUT "Your
grade is ", Grade

Mark < 40?

Mark < 60?

Mark < 80?

No

Yes

No

Yes

No

Yes

1

2

3

4

5

6

7

 OUTPUT "Enter your exam mark"

 INPUT Mark

 IF Mark < 40

 THEN

 Grade ← "Fail"

 ELSE

 IF Mark < 60

 THEN

 Grade ← "Pass"

 ELSE

 IF Mark < 80

 THEN

 Grade ← "Merit"

 ELSE

 Grade ← "Distinction"

 ENDIF

 ENDIF

 ENDIF

 OUTPUT "Your grade is ", Grade

1

2

3

4

5

6

7

19

9.2
Algorithm

s

9
ACTIVITY

The flowchart has been extended to allow more than one mark to be input.

▲ Figure 9.4

Extend the identifier table and write the extra pseudocode to complete the
algorithm. Then check your algorithm works by writing a short program
from your pseudocode statements using the same names for your
identifiers.

Start

End

Grade =
"Distinction"

Grade = "Fail"

Grade = "Pass"

Grade = "Merit"

OUTPUT "Enter
your exam mark"

OUTPUT "Your
grade is ", Grade

OUTPUT "Enter another
exam mark Y/N"

INPUT Mark

INPUT "Reply"

Mark < 40?

Mark < 60?

Mark < 80?

Reply = "Y"?

No

Yes

No

Yes

Yes

No

No

Yes

20

9
A

LG
O

R
IT

H
M

 D
ES

IG
N

 A
N

D
 P

R
O

B
LE

M
-S

O
LV

IN
G

9
9.2.5 Stepwise refinement
The algorithms looked at so far have been short and simple. When an
algorithm is written to solve a more complex problem, decomposition is used to
break the problem down into smaller and more manageable parts. These parts
then need to be written as a series of steps where each step can be written
as a statement in a high-level programming language, this process is called
stepwise refinement.

Many problems are more complex than they seem if a robust solution is to be
developed. Look at the first step of the structured English to calculate a time
in seconds.

The first step can be further broken down, as follows:

Each of these steps can be broken down further:

These steps can now be written in pseudocode. For example, the input routine
for the seconds:

1 Enter time taken to run marathon in hours, minutes and seconds

2 Calculate and store marathon time in seconds

3 Output marathon time in seconds

1.1 Enter the hours

1.2 Enter the minutes

1.3 Enter the seconds

1.1.1 Input value for hours

1.1.2 Check input in the range 2 to 8

1.1.3 Reject if out of range or not a whole number and re-input value step 1.1.1

1.1.4 Accept and store value in hours

1.2.1 Input value for minutes

1.2.2 Check input in the range 0 to 59

1.2.3 Reject if out of range or not a whole number and re-input value step 1.2.1

1.2.4 Accept and store value in minutes

1.3.1 Input value for seconds

1.3.2 Check input in the range 0 to 59

1.3.3 Reject if out of range or not a whole number and re-input value step 1.3.1

1.3.4 Accept and store value in seconds

REPEAT

 OUTPUT "Enter seconds"

 INPUT Value

UNTIL (Value >= 0) AND (Value <= 59) AND (Value = INT(Value))

MarathonSeconds ← Value

21

9.2
Algorithm

s

9

1 Algorithms can be shown as structured English, f lowcharts and pseudocode.

 Explain what is meant by:

a) structured English [2]

b) a f lowchart [2]

c) pseudocode. [2]

2 Several techniques are used in computational thinking.

 Explain what is meant by:

a) abstraction [2]

b) decomposition [2]

c) pattern recognition. [2]

3 Describe, using an example, the process of stepwise refinement. [2]

4 Computer programs have to evaluate expressions.

– Study the sequence of pseudocode statements.

– Write down the value assigned to each variable.

DECLARE h, w, r, Perimeter, Area : REAL

DECLARE A, B, C, D, E : BOOLEAN

h ← 13.6 w ← 6.4
Perimeter ← (h + w) * 2
r ← 10
Area 3.142 * r^2

Z ← 11 + r / 5 + 3
A ← NOT(r > 10)

a) A [1]

b) Perimeter [1]

c) Area [1]

d) Z [1]

Cambridge International AS & A Level Computer Science 9608
Paper 21 Q1 November 2015

ACTIVITY

Look at the algorithm to calculate the area of a chosen shape written in
structured English below. Use stepwise refinement to break each step into
more manageable parts then rewrite the algorithm using pseudocode.

Then check your pseudocode algorithm works by writing a short program
from your pseudocode statements using the same names for your
identifiers.

1 Choose the shape (square, triangle, circle)

2 Enter the length(s)

3 Calculate the area

4 Output the area

End of chapter
questions

22

9
A

LG
O

R
IT

H
M

 D
ES

IG
N

 A
N

D
 P

R
O

B
LE

M
-S

O
LV

IN
G

9
5 Study the pseudocode and answer the following questions. Line numbers have

been added to help you.

a) Give the line number of:

i) an assignment statement [1]

ii) a selection [1]

iii) an iteration. [1]

b) Complete an identifier table for the algorithm. [3]

c) Extend the algorithm to only allow four tries for a correct choice. [3]

01 REPEAT

02 OUTPUT "Menu Temperature Conversion"

03 OUTPUT "Celsius to Fahrenheit 1"

04 OUTPUT "Fahrenheit to Celsius 2"

05 OUTPUT "Exit 3"

06 OUTPUT "Enter choice"

07 IF Choice = 1 OR Choice = 2

08 THEN

09 OUTPUT"Enter temperature"

10 INPUT Temperature

11 IF Choice = 1

12 THEN

13 ConvertedTemperature ← 1.8*Temperature + 32

14 ELSE

15 ConvertedTemperature ← (Temperature – 32) * 5 / 9

16 ENDIF

17 OUTPUT "Converted temperature is ", ConvertedTemperature

18 ELSE

19 IF Choice <> 3

20 THEN

21 OUTPUT "Error in choice"

22 ENDIF

23 ENDIF

24 UNTIL Choice = 3

23

9.2
Algorithm

s

9
6 A driver buys a new car. The value of the car reduces each year by a percentage

of its current value. The percentage reduction is:

– in the first year, 40%

– in each following year, 20%.

 The driver writes a program to predict the value of the car in future years. The
program requirements are:

– Enter the cost of the new car (to nearest $).

– Calculate and output the value of the car at the end of each year.

– The program will end when either the car is nine years old, or when the value
is less than $1000.

a) Study the incomplete pseudocode which follows in part b) and fill in the
identifier table. [3]

Identifier Data type Description

b) Complete the pseudocode for this design. [6]

Cambridge International AS & A Level Computer Science 9608
Paper 21 Q5 November 2015

 OUTPUT "Enter purchase price"

 INPUT PurchasePrice

 CurrentValue ← ...

 YearCount ← 1

 WHILE AND

 IF ...

 THEN

 CurrentValue ← CurrentValue * (1 – 40 / 100)

 ELSE

 CurrentValue ←

 ENDIF

 OUTPUT YearCount, CurrentValue

 ...

 ENDWHILE

24

15
 H

A
R

D
W

A
R

E

 15 Hardware

15.1 Processors and parallel processing

In this chapter you will learn about:

★ the differences between RISC (Reduced Instruction Set Computer) and
CISC (Complex Instruction Set Computer) processors

★ the importance and use of pipelining and registers in RISC processors
★ SISD, SIMD, MISD and MIMD basic computer architectures
★ the characteristics of massively parallel computers
★ interrupt handling on CISC and RISC computers
★ Boolean algebra including De Morgan’s Laws
★ the simplification of logic circuits and expressions using Boolean

algebra
★ producing truth tables from common logic circuits
★ half adder and full adder logic circuits
★ the construction and role of SR and JK flip-flop circuits
★ using Karnaugh maps in the solution of logic problems.

WHAT YOU SHOULD ALREADY KNOW
In Chapter 4, you learnt about processor fundamentals. Try the following
three questions to refresh your memory before you start to read the first
part of this chapter:
1 A computer uses the following status registers when carrying out the

addition of two binary numbers:
n a carry flag (C)
n an overflow flag (V)
n a negative flag (N).

 Describe what happens to the above status registers when the
following pairs of 8-bit binary numbers are added together and explain
the significance of the flag values in both sets of calculation:
a) 0 0 1 1 1 1 0 0 and 0 1 0 0 0 1 1 0
b) 1 1 0 0 0 1 0 0 and 1 0 1 1 1 0 1 0

2 Describe the stages in the fetch-execute cycle.
3 a) A processor contains three buses: data bus, address bus and control

bus.
i) What factors determine the width of a bus?
ii) Which of the three buses will have the smallest width?
iii) An address bus is increased from 16-bit to 64-bit. What would be

the result of this upgrade to the processor?
b) Explain the role of

i) the clock ii) interrupts in a typical processor.

25

15.1
Processors and parallel processing

15

15.1.1 RISC and CISC processors
Early computers made use of the Von Neumann architecture (see Chapter 4).
Modern advances in computer technology have led to much more complex
processor design. Two basic philosophies have emerged over the last few years:

» developers who want the emphasis to be on the hardware used; the hardware
should be chosen to suit the high-level language development

» developers who want the emphasis to be on the software/instruction sets to
be used; this philosophy is driven by ever faster execution times.

The first philosophy is part of a group of processor architectures known as
CISC (Complex Instruction Set Computer). The second philosophy is part of
a group of processor architectures known as RISC (Reduced Instruction Set
Computer).

CISC processors
CISC processor architecture makes use of more internal instruction formats
than RISC. The design philosophy is to carry out a given task with as few
lines of assembly code as possible. Processor hardware must therefore be
capable of handling more complex assembly code instructions. Essentially,
CISC architecture is based on single complex instructions which need to be
converted by the processor into a number of sub-instructions to carry out the
required operation.

For example, suppose we wish to add the two numbers A and B together, we
could write the following assembly instruction:

This methodology leads to shorter coding (than RISC) but may actually lead to
more work being carried out by the processor.

RISC processors
RISC processors have fewer built-in instruction formats than CISC. This can lead
to higher processor performance. The RISC design philosophy is built on the

Key terms
CISC – complex instruction set computer.

RISC – reduced instruction set computer.

Pipelining – allows several instructions to be
processed simultaneously without having to wait for
previous instructions to finish.

Parallel processing – operation which allows a process
to be split up and for each part to be executed by a
different processor at the same time.

SISD – Single Instruction Single Data, computer
architecture which uses a single processor and one
data source.

SIMD – Single Instruction Multiple Data, computer
architecture which uses many processors and different
data inputs.

MISD – Multiple Instruction Single Data, computer
architecture which uses many processors but the same
shared data source.

MIMD – Multiple Instruction Multiple Data, computer
architecture which uses many processors, each of
which can use a separate data source.

Cluster – a number of computers (containing SIMD
processors) networked together.

Super computer – a powerful mainframe computer.

Massively parallel computers – the linking together
of several computers effectively forming one machine
with thousands of processors.

ADD A, B – this is a single instruction that requires several sub-instructions (multi-
cycle) to carry out the ADDition operation

26

15
 H

A
R

D
W

A
R

E

15
use of less complex instructions, which is done by breaking up the assembly
code instructions into a number of simpler single-cycle instructions. Ultimately,
this means there is a smaller, but more optimised set of instructions than CISC.
Using the same example as above to carry out the addition of two numbers A
and B (this is the equivalent operation to ADD A, B):

Each instruction requires one clock cycle (see Chapter 4). Separating commands
such as LOAD and STORE reduces the amount of work done by the processor.
This leads to faster processor performance since there are ultimately a smaller
number of instructions than CISC. It is worth noting here that the optimisation
of each of these simpler instructions is done through the use of pipelining (see
the next section).

Table 15.1 shows the main differences between CISC and RISC processors.

CISC features RISC features

Many instruction formats are possible Uses fewer instruction formats/sets

There are more addressing modes Uses fewer addressing modes

Makes use of multi-cycle instructions Makes use of single-cycle instructions

Instructions can be of a variable length Instructions are of a fixed length

Longer execution time for instructions Faster execution time for instructions

Decoding of instructions is more complex Makes use of general multi-purpose registers

It is more difficult to make pipelining work Easier to make pipelining function correctly

The design emphasis is on the hardware The design emphasis is on the software

Uses the memory unit to allow complex instructions to be
carried out

Processor chips require fewer transistors

▲ Table 15.1

Pipelining
One of the major developments resulting from RISC architecture is pipelining.
This is one of the less complex ways of improving computer performance.
Pipelining allows several instructions to be processed simultaneously without
having to wait for previous instructions to be completed. To understand how
this works, we need to split up the execution of a given instruction into its
five stages:

1 instruction fetch cycle (IF)
2 instruction decode cycle (ID)
3 operand fetch cycle (OF)

LOAD X, A – this loads the value of A into a register X

LOAD Y, B – this loads the value of B into a register Y

ADD A, B – this takes the values for A and B from X and Y and adds them

STORE Z – the result of the addition is stored in register Z

EXTENSION ACTIVITY

Find out how some of the newer technologies, such as EPIC (Explicitly
Parallel Instruction Computing) and VLIW (Very Long Instruction Word)
processor architectures, are used in computer systems.

27

15.1
Processors and parallel processing

15
4 instruction execution cycle (IE)
5 writeback result process (WB).

To demonstrate how pipelining works, we will consider a program which has six
instructions (A, B, C, D, E and F). Figure 15.1 shows the relationship between
processor stages and the number of required clock cycles when using pipelining.
It shows how pipelining would be implemented with each stage requiring one
clock cycle to complete.

▲ Figure 15.1

This functionality clearly requires processors with several registers to store
each of the stages.

Execution of an instruction is split into a number of stages; as each stage
completes, the first stage of the first instruction can now be executed. Then
the second instruction can start execution before the first one has completed,
and so on, until all six instructions are processed.

In this example, by the time instruction ‘A’ has completed, instruction ‘F’ is at
the first stage and instructions ‘B’ to ‘E’ are at various in-between stages in
the process. As Figure 15.1 shows, a number of instructions can be processed at
the same time, and there is no need to wait for an instruction to go through all
five cycles before the next one can be implemented. In the example shown, the
six instructions require 10 clock cycles to go to completion. Without pipelining,
it would require 30 (6 × 5) cycles to complete (since each of the six instructions
requires five stages for completion).

Interrupts
In Chapter 4, we discussed interrupt handling in processors where each
instruction is handled sequentially before the next one can start (five stages
for instruction ‘A’, then five stages for instruction ‘B’, and so on).

Once the processor detects the existence of an interrupt (at the end of the
fetch-execute cycle), the current program would be temporarily stopped
(depending on interrupt priorities), and the status of each register stored. The
processor can then be restored to its original status before the interrupt was
received and serviced.

However, with pipelining, there is an added complexity; as the interrupt is
received, there could be a number of instructions still in the pipeline. The usual
way to deal with this is to discard all instructions in the pipeline except for the
last instruction in the write-back (WB) stage.

The interrupt handler routine can then be applied to this remaining instruction
and, once serviced, the processor can restart with the next instruction in the

WB

Clock cycles

Pr
o

ce
ss

o
r

st
ag

es

IE

OF

ID

IF A

1

B

2

C

3

D

4

E

5

F

A B C D E F

A B C D E F

A B C D E F

A B C D E F

6 7 8 9 10

28

15
 H

A
R

D
W

A
R

E

15
sequence. Alternatively, although much less common, the contents of the five
stages can be stored in registers. This allows all current data to be stored,
allowing the processor to be restored to its previous status once the interrupt
has been serviced.

15.1.2 Parallel processing
Parallel processor systems
There are many ways that parallel processing can be carried out. The four
categories of basic computer architecture presently used are described below.

SISD (Single Instruction Single Data)
SISD (single instruction single data) uses a single processor that can handle
a single instruction and which also uses one data source at a time. Each
task is processed in a sequential order. Since there is a single processor, this
architecture does not allow for parallel processing. It is most commonly found
in applications such as early personal computers.

▲ Figure 15.2 SISD diagram

SIMD (Single Instruction Multiple Data)
SIMD (single instruction multiple data) uses many processors. Each processor
executes the same instruction but uses different data inputs – they are all
doing the same calculations but on different data at the same time.

SIMD are often referred to as array processors; they have a particular
application in graphics cards. For example, suppose the brightness of an image
made up of 4000 pixels needs to be increased. Since SIMD can work on many
data items at the same time, 4000 small processors (one per pixel) can each
alter the brightness of each pixel by the same amount at the same time. This
means the whole of the image will have its brightness increased consistently.

Other applications include sound sampling – or any application where a large
number of items need to be altered by the same amount (since each processor
is doing the same calculation on each data item).

▲ Figure 15.3 SIMD diagram

processor instructions
data

source

processor

processor

processor

processor

instructions
data

source

29

15.1
Processors and parallel processing

15
MISD (Multiple Instruction Single Data)
MISD (multiple instruction single data) uses several processors. Each
processor uses different instructions but uses the same shared data source.
MISD is not a commonly used architecture (MIMD tends to be used instead).
However, the American Space Shuttle flight control system did make use of
MISD processors.

▲ Figure 15.4 MISD diagram

MIMD (Multiple Instruction Multiple Data)
MIMD (multiple instruction multiple data) uses multiple processors. Each one
can take its instructions independently, and each processor can use data from
a separate data source (the data source may be a single memory unit which has
been suitably partitioned). The MIMD architecture is used in multicore systems
(for example, by super computers or in the architecture of multi-core chips).

▲ Figure 15.5 MIMD diagram

There are a number of factors to consider when using parallel processing.

When carrying out parallel processing, processors need to be able to
communicate. The data which has been processed needs to be transferred from
one processor to another.

When software is being designed, or programming languages are being chosen,
they must be capable of processing data from multiple processors at the same
time.

It is a much faster method for handling large volumes of independent data; any
data which relies on the result of a previous operation (dependent data) would
not be suitable in parallel processing. Data used will go through the same
processing, which requires this independence from other data.

Parallel processing overcomes the Von Neumann ‘bottleneck’ (in this type of
architecture, data is constantly moving between memory and processor, leading
to latency; as processor speeds have increased, the amount of time they remain
idle has also increased since the processor’s performance is limited to the
internal data transfer rate along the buses). Finding a way around this issue

processor

processor

processor

processor

instructions
data

source

processor

processor

processor

processor

processor

processor

processor

processor

instructionsdata
source

30

15
 H

A
R

D
W

A
R

E

15
is one of the driving forces behind parallel computers in an effort to greatly
improve processor performance.

However, parallel processing requires more expensive hardware. When deciding
whether or not to use this type of processor, it is important to take this factor
into account.

Parallel computer systems
SIMD and MIMD are the most commonly used processors in parallel processing.
A number of computers (containing SIMD processors) can be networked together
to form a cluster. The processor from each computer forms part of a larger
pseudo-parallel system which can act like a super computer. Some textbooks
and websites also refer to this as grid computing.

Massively parallel computers have evolved from the linking together of a
number of computers, effectively forming one machine with several thousand
processors. This was driven by the need to solve increasingly complex problems
in the world of science and mathematics. By linking computers (processors)
together in this way, it massively increases the processing power of the ‘single
machine’. This is subtly different to cluster computers where each computer
(processor) remains largely independent. In massively parallel computers, each
processor will carry out part of the processing and communication between
computers is achieved via interconnected data pathways. Figure 15.6 shows this
simply.

▲ Figure 15.6 Typical massively parallel computer (processor) system showing
interconnected pathways

interconnected
data pathways

31

15.1
Processors and parallel processing

15
EXTENSION ACTIVITIES

1 Find out more about the applications of multi-computer systems (cluster
and massively parallel computers). In particular, research their uses in
seismology, astronomy, climate modelling, nuclear physics and weather
forecasting models.

2 Look at Figure 15.7. Determine, from research, the main reasons for the
almost linear expansion in the processing speed of computers over the
last 25 years. The data in the graph compares Number of calculations per
second against Year.

▲ Figure 15.7

1020

1019

1018

1017

1016

1015

1014

1013

1012

1011

1994 1996 1998 2000 2002 2004 2006

Year

N
u

m
b

er
 o

f
ca

lc
u

la
ti

o
n

s
p

er
 s

ec
o

n
d

2008 2010 2012 2014 2016 2018

ACTIVITIES

1 a) Describe why RISC is an important development in processor
technology.

b) Describe the main differences between RISC and CISC technologies.
2 a) What is meant by the von Neumann bottleneck?

b) How does the von Neumann bottleneck impact on processor
performance?

3 a) What are the main differences between cluster computers and
massively parallel computers?

b) Describe one application which uses massively parallel computers.
Justify your choice of answer.

4 A processor uses pipelining. The following instructions are to be input:
 1 LOAD A
 2 LOAD B
 3 LOAD C
 4 ADD A,B,C
 5 STORE D
 6 OUT D
 Draw a diagram to show how many clock cycles are needed for these six

instructions to be carried out. Compare your answer to the number of
clock cycles needed for a processor using sequential processing.

32

15
 H

A
R

D
W

A
R

E

15
15.2 Boolean algebra and logic circuits

15.2.1 Boolean algebra
Boolean algebra is named after the mathematician George Boole. It is a form
of algebra linked to logic circuits and is based on the two statements:

TRUE (1)

FALSE (0)

Key terms
Boolean algebra – a
form of algebra linked
to logic circuits and
based on TRUE and
FALSE.

Half adder circuit –
carries out binary
addition on two bits
giving sum and carry.

Full adder circuit – two
half adders combined
to allow the sum of
several binary bits.

Combination circuit –
circuit in which the
output depends entirely
on the input values.

Sequential circuit –
circuit in which the
output depends on
input values produced
from previous output
values.

Flip-flop circuits –
electronic circuits with
two stable conditions
using sequential
circuits.

Cross-coupling –
interconnection
between two logic
gates which make up a
flip-flop.

Positive feedback – the
output from a process
which influences the
next input value to the
process.

Sum of products
(SoP) – a Boolean
expression containing
AND and OR terms.

Karnaugh maps
(K-maps) – a method
used to simplify logic
statements and logic
circuits; uses Gray
codes.

Gray codes – ordering
of binary numbers
such that successive
numbers differ by one
bit value only e.g. 00 01
11 10.

WHAT YOU SHOULD ALREADY KNOW
In Chapter 3, you learnt about logic gates and logic circuits. Try the
following three questions to refresh your memory before you start to read
the second part of this chapter.
1 Produce a truth table for the logic circuit shown in Figure 15.8.

▲ Figure 15.8

2 Draw a simplified version of the logic circuit shown in Figure 15.9
and write the Boolean expressions to represent Figure 15.9 and your
simplified version.

▲ Figure 15.9

3 The warning light on a car comes on (= 1) if either one of three
conditions occur:
n sensor1 and sensor2 detect a fault (give an input of 1) OR
n sensor2 and sensor3 detect a fault (give an input of 1) OR
n sensor1 and sensor3 detect a fault (give an input of 1).
a) Write a Boolean expression to represent the above problem.
b) Give the logic circuit to represent the above system.
c) Produce a truth table and check your answers to parts a) and b)

agree.

X
B

C

A

X

P

Q

R

33

15.2 B
oolean algebra and logic circuits

15
The notation used in this book to represent these two Boolean operators is:

Table 15.2 summarises the rules that govern Boolean algebra. It also includes
the additional De Morgan’s Laws. Also note that, in Boolean algebra, 1 + 1 = 1,
1 + 0 = 1, and A = A (remember your logic gate truth tables in Chapter 3).

Commutative Laws A + B = B + A A.B = B.A

Associative Laws A + (B + C) = (A + B) + C A.(B.C) = (A.B).C

Distributive Laws A.(B + C) = (A.B) + (A.C)

(A + B).(A + C) = A + B.C

A + (B.C) = (A + B).(A + C)

Tautology/Idempotent Laws A.A = A A + A = A

Tautology/Identity Laws 1.A = A 0 + A = A

Tautology/Null Laws 0.A = 0 1 + A = 1

Tautology/Inverse Laws A.A = 0 A + A = 1

Absorption Laws A.(A + B) = A

A + A.B = A

A + (A.B) = A

A + A.B = A + B

De Morgan’s Laws (A.B) = A + B (A + B) = A.B

▲ Table 15.2 The rules that govern Boolean algebra

Table 15.3 shows proof of De Morgan’s Laws. Since the last two columns in each
section are identical, then the two De Morgan’s Laws hold true.

A B A B A + B A.B A B A B A.B A + B

0 0 1 1 1 1 0 0 1 1 1 1

0 1 1 0 1 1 0 1 1 0 0 0

1 0 0 1 1 1 1 0 0 1 0 0

1 1 0 0 0 0 1 1 0 0 0 0

Both columns have the same
values

Both columns have the same
values

▲ Table 15.3 Proof of De Morgan’s Laws

Simplification using Boolean algebra

Simplify A + B + A + B

A which is also written as NOT A

A.B which is also written as A AND B

A + B which is also written as A OR B

Example 15.1

Solution
Using the associate laws we have: A + B + A + B ⇒ (A + A) + (B + B)

Using the inverse laws we have: (A + A) = 1 and (B + B) = 1

Therefore, we have 1 + 1, which is simply 1 ⇒ A + B + A + B = 1

34

15
 H

A
R

D
W

A
R

E

15
Simplify A.B.C + A.B.C + A.B.C + A.B.C

15.2.2 Further logic circuits
Half adder circuit and full adder circuit
In Chapter 3, the use of logic gates to create logic circuits to carry out specific
tasks was discussed in much detail. Two important logic circuits used in
computers are:

» the half adder circuit » the full adder circuit.

Half adder
One of the basic operations in any computer is binary addition. The half adder
circuit is the simplest circuit. This carries binary addition on 2 bits generating
two outputs:

» the sum bit (S) » the carry bit (C).

Consider 1 + 1. It will give the result 1 0 (denary value 2). The ‘1’ is the carry
and ‘0’ is the sum. Table 15.4 shows this as a truth table.

Figure 15.10 shows how this is often shown in graphic form (left) or as a logic
circuit (right):

▲ Figure 15.10

Example 15.2

Solution
Rewrite the expression as: A.B.C + (A.B.C + A.B.C + A.B.C)

This becomes: (A.B.C + A.B.C) + (A.B.C + A.B.C) + (A.B.C + A.B.C)

which transforms to: B.C.(A + A) + A.C.(B + B) + A.B.(C + C)

Since A + A, B + B and C + C are all equal to 1

then we have: B.C.1 + A.C.1 + A.B.1 ⇒ B.C + A.C + A.B

ACTIVITY

Simplify the following logic expressions showing all the stages in your
simplification.
a) A.C + B.C.D + A.B.C + A.C.D
b) B + A.B + A.C.D + A.C
c) A.B.C + A.B.C + A.B.C + A.B.C
d) A.(A + B) + (B + A.A).(A + B)
e) (A + C).(A.D + A.D) + A.C + C

INPUTS OUTPUTS

A B S C

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1

▲ Table 15.4

A S (sum)1 – bit
half

adderB C (carry)

A

B
S (sum)

C (carry)

35

15.2 B
oolean algebra and logic circuits

15
Other logic gates can be used to produce the half adder (see next section).

As you have probably guessed already, the half adder is unable to deal with the
addition of several binary bits (for example, an 8-bit byte). To enable this, we
have to consider the full adder circuit.

Full adder
Consider the following sum using 5-bit numbers.

▲ Figure 15.11

The sum shows how we have to deal with CARRY from the previous column.
There are three inputs to consider in this third column, for example, A = 1,
B = 0 and C = 1 (S = 0).

This is why we need to join two half adders together to form a full adder:

▲ Figure 15.12

This has an equivalent logic circuit; there are a number of ways of doing this.
For example, the following logic circuit uses OR, AND and XOR logic gates.

▲ Figure 15.13

[1]

[0]

[0]

[1]

A

B

S

C

0

0

1

1

1

0

0

1

1

1

0

0

1

1 this is the sum produced from the addition

this is the carry from the previous bit position

S (sum)
half

adder

A

B

Cin

Cout (carry)
OR

gate

half
adder

half adder

half adder

OR gateA
B

Cin

S

Cout

36

15
 H

A
R

D
W

A
R

E

15
Table 15.5 is the truth table for the full adder circuit.

As with the half adder circuits,
different logic gates can be used to
produce the full adder circuit.

The full adder is the basic building
block for multiple binary additions.
For example, Figure 15.14 shows how
two 4-bit numbers can be summed
using four full adder circuits.

▲ Figure 15.14

15.2.3 Flip-flop circuits
All of the logic circuits you have encountered up to now are combination
circuits (the output depends entirely on the input values).

We will now consider a second type of logic circuit, known as a sequential
circuit (the output depends on the input value produced from a previous
output value).

Examples of sequential circuits include flip-flop circuits. This chapter will
consider two types of flip-flops: SR flip-flops and JK flip-flops.

SR flip-flops
SR flip-flops consist of two cross-coupled NAND gates (note: they can equally
well be produced from NOR gates). The two inputs are labelled ‘S’ and ‘R’, and
the two outputs are labelled ‘Q’ and ‘Q’ (remember Q is equivalent to NOT Q).

INPUTS OUTPUTS

A B Cin S Cout

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

▲ Table 15.5

C4 C3 C2 C1 C0

S3

B3A3

full adder full adder full adder full adder

S2

B2A2

S1

B1A1

S0

B0A0

ACTIVITIES

1 a) Produce a half adder circuit using NAND gates only.
b) Generate a truth table for your half adder circuit in part a) and confirm

it matches the one shown in Section 15.2.4.
2 a) Produce a full adder circuit using NAND gates only.

b) Generate a truth table for your full adder circuit in part a) and confirm
it matches the one shown in Section 15.2.4.

EXTENSION
ACTIVITIES

1 Find out why
NAND gates are
used to produce
logic circuits
even though they
often increase
the complexity
and size of the
overall circuit.

2 Produce half
adder and full
adder circuits
using NOR gates
only.

37

15.2 B
oolean algebra and logic circuits

15
In this chapter, we will use SR flip-flop circuits constructed from NOR gates, as
shown in Figure 15.15.

The output from gate ‘X’ is Q and
the output from gate ‘Y’ is Q.
The inputs to gate ‘X’ are R and
Q (shown in red on Figure 15.15);
the inputs to gate ‘Y’ are S and Q
(shown in green on Figure 15.15).
The output from each NOR gate
gives a form of positive feedback
(known as cross-coupling, as
mentioned earlier).

We will now consider the truth table to match our SR flip-flop using the initial
states of R = 0, S = 1 and Q = 1. The sequence of the stages in the process is
shown in Figure 15.16.

▲ Figure 15.16

Now consider what happens if we change the value of S from 1 to 0.

▲ Figure 15.17

The reader is left to consider the other options which lead to the truth table,
Table 15.6, for the flip-flop circuit.

INPUTS OUTPUTS Comment

S R Q Q

(a) 1 0 1 0

(b) 0 0 1 0 following S = 1 change

(c) 0 1 0 1

(d) 0 0 0 1 following R = 1 change

(e) 1 1 0 0

▲ Table 15.6

▲ Figure 15.15 SR flip-flop circuit

R (re-set)

S (set)

Q

Q
–

gate X

gate Y

Q
–

Sequence: [1] —› [2] —› [3] —› [4] —› [5] —› [6]

Which gives: S

1 0 1 0

R Q

0
0

Q = 1

Q = 0
–

1

01

1

[1]

[6]

[3]

[5]

[2]

[4]R = 0

S = 1

Q

Q
–

Q
–

Sequence: [1] —› [2] —› [3] —› [4] —› [5] —› [6]

Which gives: S

1 0 1 0

R Q

0
0

Q = 1

Q = 0
–

1

00

1

[1]

[6]

[3]

[5]

[2]

[4]R = 0

S = 0

Q

Q
–

38

15
 H

A
R

D
W

A
R

E

15
Explanation:

S = 1, R = 0, Q = 1, Q = 0 is the set state in this example

S = 0, R = 0, Q = 1, Q = 0 is the re-set state in this example

S = 0, R = 1, Q = 0, Q = 1 here the value of Q in line (b) remembers the
value of Q from line (a); the value of Q in line
(d) remembers the value of Q in line (c)

S = 0, R = 0, Q = 0, Q = 1 R changes from 1 to 0 and has no effect on
outputs (these values are remembered from line
(c))

S = 1, R = 1, Q = 0, Q = 0 this is an invalid case since Q should be the
compliment (opposite) of Q.

The truth table shows how an input value of S = 0 and R = 0 causes no change
to the two output values; S = 0 and R = 1 reverses the two output values; S = 1
and R = 0 always gives Q = 1 and Q = 0 which is the set value.

The truth table shows that SR flip-flops can be used as a storage/memory device
for one bit; because a value can be remembered but can also be changed it
could be used as a component in a memory device such as a RAM chip.

It is important that the fault condition in line (e) is considered when designing
and developing storage/memory devices.

JK flip-flops
The SR flip-flop has the following problems:

» Invalid S, R conditions (leading to conflicting output values) need to be
avoided.

» If inputs do not arrive at the same time, the flip-flop can become unstable.

To overcome such problems, the JK flip-flop has been developed. A clock and
additional gates are added, which help to synchronise the two inputs and also
prevent the illegal states shown in line (e) of Table 15.6. The addition of the
synchronised input gives four possible input conditions to the JK flip-flop:

» 1
» 0
» no change
» toggle (which takes care of the invalid S, R states).

The JK flip-flop is represented as shown in Figure 15.18.

▲ Figure 15.18 JK flip-flop symbol (left) and JK flip-flop using NAND gates only (right)

clock
J Q

K Q
–

Q

Q
–

J

K

clock

39

15.2 B
oolean algebra and logic circuits

15
Table 15.7 is the simplified truth table for the JK flip-flop.

J K Value of Q
before clock

pulse

Value of Q
after clock

pulse

OUTPUT

0 0 0 0 Q is unchanged after clock pulse

0 0 1 1

1 0 0 1 Q = 1

1 0 1 1

0 1 0 0 Q = 0

0 1 1 0

1 1 0 1 Q value toggles between 0 and 1

1 1 1 0

▲ Table 15.7

» When J = 0 and K = 0, there is no change to the output value of Q.
» If the values of J or K change, then the value of Q will be the same as the

value of J (Q will be the value of K).
» When J = 1 and K = 1, the Q-value toggles after each clock pulse, thus

preventing illegal states from occurring (in this case, toggle means the flip-
flop will change from the ‘Set’ state to the ‘Re-set’ state or the other way
round).

Use of JK flip-flops
» Several JK flip-flops can be used to produce shift registers in a computer.
» A simple binary counter can be made by linking up several JK flip-flop

circuits (this requires the toggle function).

15.2.4 Boolean algebra and logic circuits
In Section 15.2.1, the concept of Boolean algebra was introduced. One of the
advantages of this method is to represent logic circuits in the form of Boolean
algebra.

It is possible to use the truth table and apply the sum of products (SoP), or
the Boolean expression can be formed directly from the logic circuit.

Write down the Boolean expression to represent this logic circuit (Figure 15.19).

▲ Figure 15.19

EXTENSION
ACTIVITIES

1 Find out how JK
flip-flops can
be used as shift
registers and
binary counters
in a computer.

2 Where else
in computer
architecture are
flip-flop circuits
used? Find out
why they are
used in each case
you describe.

Example 15.3

A

stage 1
stage 3

stage 4

stage 5
stage 2

B

C

40

15
 H

A
R

D
W

A
R

E

15

Write the Boolean expression which represents this logic circuit (Figure 15.20).

▲ Figure 15.20

Solution
Stage 1: A AND B

Stage 2: B OR C

Stage 3: stage 1 OR stage 2 ⇒ (A AND B) OR (B OR C)

Stage 4: A OR (NOT C)

Stage 5: stage 3 AND stage 4

⇒ ((A AND B) OR (B OR C)) AND (A OR (NOT C))

Written in Boolean algebra form: ((A.B) + (B + C)).(A + C)

Example 15.4

A
B

X

C

Solution
In this example, we will first produce the truth table and then generate the
Boolean expression from the truth table, Table 15.8.

To produce the Boolean expression from the truth
table, we only consider those rows where the output
(X) is 1:

(A.B.C + A.B.C + A.B.C + A.B.C + A.B.C)

If we apply the Boolean algebra laws, we get:

(A.B.C + A.B.C + A.B.C) + (A.B.C + A.B.C)

⇒ ((A.B.C + A.B.C) + (A.B.C + A.B.C)) + (A.B.C
+ A.B.C)

⇒ A.C.(B + B) + B.C.(A + A) + (A.B.C + A.B.C)

⇒ A.C + B.C + A.B.C + A.B.C

Therefore, written as a Boolean expression: A.C + B.C + A.B.C + A.B.C

We therefore end up with a simplified Boolean expression which has the same
effect as the original logic circuit. The reader is left the task of producing the
truth table from the above expression to confirm they are both the same.

INPUTS OUTPUT

A B C X

0 0 0 1

0 0 1 0

0 1 0 1

0 1 1 1

1 0 0 1

1 0 1 0

1 1 0 1

1 1 1 0

▲ Table 15.8

41

15.2 B
oolean algebra and logic circuits

15

15.2.5 Karnaugh maps (K-maps)
In the previous activities, it was frequently necessary to simplify Boolean
expressions. Sometimes, this can be a long and complex process. Karnaugh
maps were developed to help simplify logic expressions/circuits.

Produce a Boolean expression for the truth table (Table 15.9) for the NAND gate.

INPUTS OUTPUT

A B X

0 0 1

0 1 1

1 0 1

1 1 0

▲ Table 15.9

ACTIVITIES

1 Produce simplified Boolean expressions for the logic circuits in Figure
15.21 (you can do this directly from the logic circuit or produce the truth
table first).

▲ Figure 15.21

2 Produce simplified Boolean expressions for the logic circuits in Figure
15.22 (you can do this directly from the logic circuit or produce the truth
table first).

▲ Figure 15.22

A

B

X

A
B X

Y

EXTENSION
ACTIVITY

Karnaugh maps
make use of Gray
codes. Find out
the origin of Gray
codes and other
applications of the
code.

Example 15.5

42

15
 H

A
R

D
W

A
R

E

15

As you might expect, there are a number of rules governing Karnaugh maps.

Solution
Using sum of products gives the following expression:

A.B + A.B + A.B

Boolean algebra rules produce the simplified expression:

A + B

Using Karnaugh maps is a much simpler way to do this.

Each group in the Karnaugh map in Figure 15.23 combines output values where
X = 1.

▲ Figure 15.23

Thus, A.B = 1, A.B = 1 and A.B = 1

The red ring shows A as

and the green ring shows B as

giving A + B.

1A
–

B
–

B

A

1

01

1 1

1

1

Karnaugh map rules

l The values along the top and the bottom follow Gray
code rules.

l Only cells containing a 1 are taken account of.

l Groups can be a row, a column or a rectangle.

l Groups must contain an even number of 1s
(2, 4, 6, etc.).

l Groups should be as large as possible.

l Groups may overlap within the above rules.

l Single values can be regarded as a group even if they
cannot be combined with other values to form a larger
group.

l The final Boolean expression can only consider those
values which remain constant within the group (i.e.
remain a 1 or a 0 throughout the group).

43

15.2 B
oolean algebra and logic circuits

15
Produce a Boolean expression for the truth table, Table 15.10.

INPUTS OUTPUT

A B C X

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

▲ Table 15.10

Example 15.6

Solution
Sum of products gives:

A.B.C + A.B.C + A.B.C + A.B.C

We can now produce the following Karnaugh map to represent this truth table
(each 1 value in the K-map represents the above sum of products; so there will be
four 1-values in the K-map, where A and BC intersect, where A and BC intersect,
where A and BC intersect, and where A and BC intersect):

▲ Figure 15.24

l Green ring: A remains 1, B changes from 0 to 1 and C remains 1 ⇒ A.C

l Purple ring: A changes from 0 to 1, B remains 1 and C remains 1 ⇒ B.C

l Red ring: A remains 1, B remains 1 and C changes from 1 to 0 ⇒ A.B

This gives the simplified Boolean expression: A.C + B.C + A.B

(A) 0
––

(B.C)
00

– –
(B.C)
01

–
(B.C)
11

(B.C)
10

–

(A) 1

A.C B.C A.B

0

A

BC

0

0 1

11 1

0

44

15
 H

A
R

D
W

A
R

E

15
Produce a Boolean expression for the truth table, Table 15.11.

INPUTS OUTPUT Sum of products

A B C D X

0 0 0 0 1 A.B.C.D

0 0 0 1 1 A.B.C.D

0 0 1 0 1 A.B.C.D

0 0 1 1 1 A.B.C.D

0 1 0 0 0

0 1 0 1 1 A.B.C.D

0 1 1 0 0

0 1 1 1 0

1 0 0 0 0

1 0 0 1 1 A.B.C.D

1 0 1 0 0

1 0 1 1 0

1 1 0 0 0

1 1 0 1 1 A.B.C.D

1 1 1 0 0

1 1 1 1 0

▲ Table 15.11

Example 15.7

Solution
The sum of products is shown in the right-hand column. This produces the
Karnaugh map shown in Figure 15.25.

▲ Figure 15.25

This gives A.B + C.D

(C.D) 00
––

(A.B)
00

– –
(A.B)

01

–
(A.B)

11
(A.B)

10

–

(C.D) 01

1

CD

AB

1

0 0

11 1

0

1 00 0

1 00 0

(C.D) 11

(C.D) 10

–

–

45

15.2 B
oolean algebra and logic circuits

15
Notice the following possible K-map options:

This gives the value D since the values
of A and B change and the value of C
changes (0 to 1); only D is constant
at 1.

Columns 1 and 4 can be joined to
form a vertical cylinder. The values of
both C and D change, the value of A
changes, the value of B is constant at
0 giving: B

The two 1-values can be combined to
form a horizontal cylinder; values of A
and B are constant at 0 and 1
respectively; the value of D is
constant at 0; values of C changes
from 0 to 1; giving: A.B.D

The four 1-values can be combined at
the four corners; value B is constant
at 0 and value D is also constant at 0,
giving: B.D

(C.D) 00
––

(A.B)
00

– –
(A.B)

01

–
(A.B)

11
(A.B)

10

–

(C.D) 01

1

CD
AB

1

0 0

11 1

0

1 11 1

0 00 0

(C.D) 11

(C.D) 10

–

–

(C.D) 00
––

(A.B)
00

– –
(A.B)

01

–
(A.B)

11
(A.B)

10

–

(C.D) 01

1

CD
AB

1

0 0

00 1

1

1 00 1

1 00 1

(C.D) 11

(C.D) 10

–

–

(C.D) 00
––

(A.B)
00

– –
(A.B)

01

–
(A.B)

11
(A.B)

10

–

(C.D) 01

0

CD
AB

0

1 0

00 0

0

0 00 0

0 01 0

(C.D) 11

(C.D) 10

–

–

(C.D) 00
––

(A.B)
00

– –
(A.B)

01

–
(A.B)

11
(A.B)

10

–

(C.D) 01

1

CD
AB

0

0 0

00 0

1

0 00 0

1 00 1

(C.D) 11

(C.D) 10

–

–

46

15
 H

A
R

D
W

A
R

E

15

1 a) Write down the Boolean expression to represent the logic circuit below. [3]

b) Produce the Karnaugh map to represent the above logic circuit and hence
write down a simplified Boolean expression. [3]

c) Draw a simplified logic circuit from your Boolean expression in part b) using
AND and OR gates only. [2]

ACTIVITIES

1 a) Draw the truth table for the Boolean expression:
 A.B.C.D + A.B.C.D + A.B.C.D + A.B.C.D + A.B.C.D + A.B.C.D
b) Draw the Karnaugh map for the Boolean expression in part a).
c) Draw a logic circuit for the simplified Boolean expression using AND

or OR gates only.
2 a) Draw the truth table for the Boolean expression:

 A.B.C + A.B.C + A.B.C + A.B.C
b) Draw the Karnaugh map for the expression in part a) and hence write a

simplified Boolean expression.
3 Four binary signals (A, B, C and D) are used to define an integer in the

hexadecimal range (0 to F). The decimal digit satisfies one of the following
criteria (i.e. gives an output value of X = 1):

 X = 1 if
 A = 0
 B = C, but A ≠ B and A ≠ C
 B = 0, C = 0

a) Complete the truth table (with headings A, B, C, D, X) for the above
criteria.

b) Construct the Karnaugh map to represent the above criteria and
produce a simplified Boolean expression.

c) Hence, draw an efficient logic circuit using AND, OR and NOT gates
only. Indicate which input value is not actually required by the logic
circuit.

End of chapter
questions

X

A

B

C

47

15.2 B
oolean algebra and logic circuits

15
2 a) Consider the following truth table.

INPUTS OUTPUT

A B C D X

0 0 0 0 0

0 0 0 1 0

0 0 1 0 1

0 0 1 1 1

0 1 0 0 0

0 1 0 1 1

0 1 1 0 0

0 1 1 1 1

1 0 0 0 1

1 0 0 1 1

1 0 1 0 1

1 0 1 1 1

1 1 0 0 1

1 1 0 1 1

1 1 1 0 1

1 1 1 1 1

i) Draw a Karnaugh map from this truth table. [3]

ii) Use your Karnaugh map from part a) i) to produce a Boolean expression.
 [4]

b) Use the laws of Boolean algebra to simplify:

i) (A + C).(A.D + A.D) + A.C + C [2]

ii) A.(A + B) + (B + A.A).(A + B) [2]

3 a) An SR f lip-f lop is constructed from NOR gates:

i) Complete the truth table for the SR f lip-f lop. [4]

ii) One of the S, R combinations in the truth table
should not be allowed to occur. State the values
of S and R that should not be allowed to occur.
Explain your choice of values. [3]

Q

Q
S

–

R

INPUTS OUTPUTS

S R Q Q

1 0 1 0

0 0

0 1

0 0

1 1

48

15
 H

A
R

D
W

A
R

E

15
b) JK f lip-f lops are another type of f lip-f lop.

i) What are the three inputs to a JK f lip-f lop? [1]

ii) Give an advantage of using JK f lip-f lops. [1]

iii) Describe two uses of JK f lip-f lops in computers. [2]

4 a) Describe four types of processors used in parallel processing. [4]

b) A hardware designer decided to look into the use of parallel processing.
Describe three features of parallel processing he needs to consider when
designing his new system. [3]

c) A computer system uses pipelining. An assembly code program being run
has 8 instructions. Compare the number of clock cycles required when using
pipelining compared to a sequential computer. [3]

5 a) Four descriptions and four types of computer architecture are shown below.

 Draw a line to connect each description to the appropriate type of computer
architecture. [4]

Description Computer architecture

A computer that does not have the
ability for parallel processing

SIMD

The processor has several ALUs; each
ALU executes the same instructions but

on different data
MISD

There are several processors;
each processor executes different

instructions drawn from a common pool;
each processor operates on different

data drawn from a common pool

SISD

There is only one processor executing
one set of instructions on a single set

of data
MIMD

b) In a massively parallel computer, explain what is meant by:

i) massive [1]

ii) parallel. [1]

c) There are both hardware and software issues that have to be considered for
parallel processing to succeed. Describe one hardware and one software issue.
 [4]

Cambridge International AS & A Level Computer Science 9608
Paper 32 Q4 November 2015

49

15.2 B
oolean algebra and logic circuits

15
6 A logic circuit is shown.

a) Write the Boolean expression corresponding to this logic circuit. [4]

b) Complete the truth table for this logic circuit. [2]

P Q R Working space S

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

c) i) Complete the Karnaugh map (K-map) for the truth table in part b). [1]

PQ

00 01 11 10

R
0

1

ii) The K-map can be used to simplify the function in part a). Draw loop(s)
around appropriate groups to produce an optional sum of products. [1]

iii) Write a simplified sum of products, using your answer to part ii). [1]

d) One Boolean identity is:

 (A + B).C = A.C + B.C

 Simplify the expression for S in part a) to the expression for S in part c) iii).
Use your given identity and De Morgan’s Laws. [3]

Cambridge International AS & A Level Computer Science 9608 Paper 32 Q3 June 2017

S

P

Q
R

Develop computational thinking and ensure
full coverage of the revised Cambridge
International AS & A Level Computer Science
syllabus (9618) with this comprehensive
Student’s Book written by experienced authors
and examiners.

» Improve understanding with clear
explanations, examples, illustrations and
diagrams, plus a glossary of key terms.

» Reinforce learning with a range of activities,
exercises, and exam-style questions.

» Prepare for further study with extension
activities that go beyond the requirements of
the syllabus and prompt further investigation
about new developments in technology.

» Follow a structured route through the course
with in-depth coverage of the full AS & A Level
syllabus.

Dynamic Learning

This book is fully supported by Dynamic Learning – the online
subscription service that helps make teaching and learning easier.
Dynamic Learning provides unique tools and content for:

 l front-of-class teaching
 l streamlining planning and sharing lessons
 l focused and flexible assessment preparation
 l independent, flexible student study

Sign up for a free trial – visit: www.hoddereducation.com/dynamiclearning

For over 25 years we have
been trusted by Cambridge
schools around the world to
provide quality support for
teaching and learning. For
this reason we have been selected by
Cambridge Assessment International
Education as an official publisher of
endorsed material for their syllabuses.

25
YEARS

W

orking for over

C
am

b
rid

g
e Assessment Internatio

na
l E

d
u

ca
tio

n

WITH

This textbook has been written for the revised
Cambridge International AS & A Level
Computer Science syllabus (9618).

We are working with Cambridge Assessment
International Education to gain endorsement for
this forthcoming title.

This resource is endorsed by
Cambridge Assessment International Education

✓ Supports the full syllabus (9618) for
examination from 2021

✓ Has passed Cambridge International’s
rigorous quality-assurance process

✓ Developed by subject experts

✓ For Cambridge schools worldwide

