
SUPPORTED BYST
UD

EN
T’

S
BO

OK
ST

UD
EN

T’
S

BO
OK

Cambridge
International AS Level

Graham Brown
Brian Sargent

30
YEARS

W

orking for over

C
am

bridge International E

duc
at

io
n

WITH

Information
Technology

Second edition

Cambridge International AS Level Information Technology
Second Edition: Boost eBook
Boost eBooks are interactive, accessible and flexible. They use the
latest research and technology to provide the very best experience for
students and teachers.

● Personalise. Easily navigate the eBook with search and zoom. Make it
your own with notes, bookmarks and highlights.

● Review. Select key facts and definitions in the text and save them as
flash cards for study and assessment preparation.

● Download. Access the eBook offline – in school, at home or on the
move – with the Boost eBooks app (available on Android and iOS).

To subscribe or register for a free trial, visit
hoddereducation.com/cambridge-alevel-it

Cambridge
International AS Level

Graham Brown
Brian Sargent

Information
Technology

Second edition

9781036005603_CIE_AS_Level_IT_Title_Page.indd 19781036005603_CIE_AS_Level_IT_Title_Page.indd 1 26/10/2023 14:0826/10/2023 14:08

005603_FM_CAIE_AS_Level_IT_BP_i-viii.indd Page 1 23/11/23 7:02 AM F-0120 005603_FM_CAIE_AS_Level_IT_BP_i-viii.indd Page 1 23/11/23 7:02 AM F-0120 /147/HO02989/work/indd/147/HO02989/work/indd

SAMPLE PROOFS

Endorsement indicates that a resource has passed Cambridge International Education’s rigorous quality-assurance process and is suitable to
support the delivery of a Cambridge syllabus. However, endorsed resources are not the only suitable materials available to support teaching and
learning, and are not essential to achieve the qualification. Resource lists found on the Cambridge website will include this resource and other
endorsed resources.

Any example answers to questions taken from past question papers, practice questions, accompanying marks and mark schemes included in this
resource have been written by the authors and are for guidance only. They do not replicate examination papers. In examinations the way marks
are awarded may be different. Any references to assessment and/or assessment preparation are the publisher’s interpretation of the syllabus
requirements. Examiners will not use endorsed resources as a source of material for any assessment set by Cambridge International Education.

While the publishers have made every attempt to ensure that advice on the qualification and its assessment is accurate, the official syllabus,
specimen assessment materials and any associated assessment guidance materials produced by the awarding body are the only authoritative source
of information and should always be referred to for definitive guidance.

Our approach is to provide teachers with access to a wide range of high-quality resources that suit different styles and types of teaching and
learning.

For more information about the endorsement process, please visit www.cambridgeinternational.org/endorsed-resources.

Cambridge International Education copyright material in this publication is reproduced under licence and remains the intellectual property of
Cambridge University Press & Assessment.

Third-party websites and resources referred to in this publication have not been endorsed by Cambridge International Education.

Answers to the practice questions and activities and all source files needed for the Student’s Book can be downloaded from www.
hoddereducation.com/cambridgeextras.

Computer hardware and software brand names mentioned in this book are protected by their respective trademarks and are acknowledged.

Photo credits: p50 [top] © Courtesy of International Business Machines Corporation, © International Business Machines Corporation; p50
[bottom] © Julian Herzog/CC BY (https://creativecommons.org/licenses/by/4.0); p93 [left] © Alvey & Towers Picture Library/Alamy Stock
Photo; p93 [right] © David Jones/PA Images/Alamy Stock Photo; p93 [bottom] © Justin Kase zsixz/Alamy Stock Photo; p267 © MclittleStock/
stock.adobe.com; p269 [left] © imageBROKER.com GmbH & Co. KG/Alamy Stock Photo; p269 [right] © Firas Nashed/stock.adobe.com; p271
© Designua/stock.adobe.com

Text credits: p46 Table 1.14 reproduced by permission of Lloyd’s Register; p151 Figure 6.3 adapted from, ‘Americans with lower incomes
have lower levels of technology adoption’ Pew Research Center, Washington, D.C. (21 June 2021) https://www.pewresearch.org/
short-reads/2021/06/22/digital-divide-persists-even-as-americans-with-lower-incomes-make-gains-in-tech-adoption/ft_2021-06-22_
digitaldivideincome_01/; Microsoft, (Access, Excel, Movie Maker, Photos, Windows and Word) are trademarks of the Microsoft group of
companies; Apple Mac is a trademark of Apple Inc., registered in the U.S. and other countries and regions.

Although every effort has been made to ensure that website addresses are correct at time of going to press, Hodder Education cannot be held
responsible for the content of any website mentioned in this book. It is sometimes possible to find a relocated web page by typing in the address
of the home page for a website in the URL window of your browser.

Hachette UK’s policy is to use papers that are natural, renewable and recyclable products and made from wood grown in well-managed forests
and other controlled sources. The logging and manufacturing processes are expected to conform to the environmental regulations of the
country of origin.

To order, please visit www.hoddereducation.com or contact Customer Service at education@hachette.co.uk/+44 (0)1235 827827.

ISBN: 978 1 0360 0560 3

© Graham Brown and Brian Sargent 2024

First published in 2021
This edition published in 2024 by
Hodder Education,
An Hachette UK Company
Carmelite House
50 Victoria Embankment
London EC4Y 0DZ
www.hoddereducation.com

Impression number 10 9 8 7 6 5 4 3 2 1

Year 2028 2027 2026 2025 2024

All rights reserved. Apart from any use permitted under UK copyright law, no part of this publication may be reproduced or transmitted in any
form or by any means, electronic or mechanical, including photocopying and recording, or held within any information storage and retrieval
system, without permission in writing from the publisher or under licence from the Copyright Licensing Agency Limited. Further details of such
licences (for reprographic reproduction) may be obtained from the Copyright Licensing Agency Limited, www.cla.co.uk

Cover photo © cookiecutter – stock.adobe.com

Illustrations by Barking Dog Art

Typeset in India by Aptara Inc

Printed in Slovenia

A catalogue record for this title is available from the British Library.

005603_FM_CAIE_AS_Level_IT_BP_i-viii.indd Page 2 23/11/23 7:02 AM F-0120 005603_FM_CAIE_AS_Level_IT_BP_i-viii.indd Page 2 23/11/23 7:02 AM F-0120 /147/HO02989/work/indd/147/HO02989/work/indd

SAMPLE PROOFS

iii

Contents list

Introduction v

1	 Data	processing	and	information	 1
1.1 Data and information 1
1.2 Quality of information 7
1.3 Encryption 10
1.4 Checking the accuracy of data 18
1.5 Data processing 27

2	 Hardware	and	software	 49
2.1 Mainframe computers and supercomputers 49
2.2 System software 59
2.3 Utility software 64
2.4 Custom-written software and off-the-shelf software 70
2.5 User interfaces 72

3	 Monitoring	and	control	 76
3.1 Monitoring and measurement technologies 76
3.2 Control technologies 82

4	 Algorithms	and	flowcharts	 98
4.1 Algorithms 98
4.2 Flowcharts 114

5	 eSecurity	 120
5.1 Personal data 120
5.2 Malware 130

6	 The	digital	divide	 137
6.1 What is the digital divide? 137
6.2 Causes of the digital divide 138
6.3 The effects of the digital divide 140
6.4 Groups affected by the digital divide 146

7	 Expert	systems	 155
7.1 What is an expert system? 155
7.2 Different scenarios where expert systems are used 157
7.3 Chaining 162

005603_FM_CAIE_AS_Level_IT_BP_i-viii.indd Page 3 23/11/23 7:02 AM F-0120 005603_FM_CAIE_AS_Level_IT_BP_i-viii.indd Page 3 23/11/23 7:02 AM F-0120 /147/HO02989/work/indd/147/HO02989/work/indd

SAMPLE PROOFS

C
o

n
te

n
ts

 l
is

t

iv

8	 Spreadsheets	 168
8.1 Creating a spreadsheet 169
8.2 Testing a spreadsheet 229
8.3 Using a spreadsheet 234
8.4 Graphs and charts 244

9	 Modelling	 254
9.1 Modelling 254
9.2 Simulations 268
9.3 Using what-if analysis 272

10	Database	and	file	concepts	 276
10.1 Database basics 276
10.2 Normalising data 325
10.3 Creating a data dictionary 330
10.4 File and data management 331

11	Video	and	audio	editing	 340
11.1 Video editing 340
11.2 Audio editing 355

Glossary 369

Index 377

Answers can be found at www.hoddereducation.com/CambridgeExtras

005603_FM_CAIE_AS_Level_IT_BP_i-viii.indd Page 4 23/11/23 7:02 AM F-0120 005603_FM_CAIE_AS_Level_IT_BP_i-viii.indd Page 4 23/11/23 7:02 AM F-0120 /147/HO02989/work/indd/147/HO02989/work/indd

SAMPLE PROOFS

v

in
tR

o
D

U
C

tio
n

Introduction

This textbook has been written to provide the knowledge, understanding and
practical skills required by those studying the AS Level content (Topics 1–11)
of the Cambridge International AS & A Level Information Technology syllabus
(9626) for examination from 2025. Students studying the full A Level will also
need to become familiar with the A Level content (Topics 12–21), covered in
Hodder Education’s Cambridge International A Level Information Technology.

How	to	use	this	book
This textbook, endorsed by Cambridge International Education, has been
designed to make your study of Information Technology as successful and
rewarding as possible.

Organisation
The book comprises 11 chapters, the titles of which correspond exactly with the
topics in the syllabus. Each chapter is broken down into sections, which largely
reflect the subtopics in the syllabus.

Features
Each chapter contains a number of features designed to help you effectively
navigate the syllabus content.

At the start of each chapter, there is a blue box that provides a summary of the
content to be covered in that topic.

In this chapter you will learn:
★	 about	the	sensors	and	calibration	used	in	monitoring	technologies
★	 about	the	uses	of	monitoring	technologies
★	 about	the	sensors	and	actuators	used	in	control	technologies
★	 how	to	write	an	algorithm	and	draw	a	flowchart.

There is also a box that lists the knowledge you should have before beginning to
study the chapter.

Before starting this chapter you should:
★	 be	familiar	with	the	terms	‘observation’,	‘interviews’,	‘questionnaires’,	

‘central	processing	unit	(CPU)’,	‘chip	and	PIN’,	‘direct	access’,	
‘encryption’,	‘file’,	‘key	field’,	‘RFID’,	‘sort’,	‘validation’	and	
‘verification’.

Chapters that require you to do practical work also feature a list of
source files that you will need to use. These can be found here:
www.hoddereducation.com/cambridgeextras.

For this chapter you will need these source files:
n	 TuckShop.csv n	 Widget.csv

005603_FM_CAIE_AS_Level_IT_BP_i-viii.indd Page 5 23/11/23 7:02 AM F-0120 005603_FM_CAIE_AS_Level_IT_BP_i-viii.indd Page 5 23/11/23 7:02 AM F-0120 /147/HO02989/work/indd/147/HO02989/work/indd

SAMPLE PROOFS

vi

in
tR

o
D

U
C

ti
o

n The practical chapters contain Tasks. The text demonstrates the techniques used
to carry out the tasks. It provides easy-to-follow step-by-step instructions, so
that practical skills are developed alongside the knowledge and understanding.
Tasks often include the use of source files that you can download from
www.hoddereducation.com/cambridgeextras.

Task 8e
Open	and	examine	the	file	Stock.csv.	Split	this	so	that	both	types	of	stock	can	be	
viewed	together.	Save	the	spreadsheet	as	Task_8e.

Each chapter also includes Activities to allow you to check your understanding
of the concepts covered and practise the skills demonstrated in the Tasks. In the
practical chapters, these often require the use of source files from the website.

Activity 1a
Explain	the	difference	between	data	and	information.

Advice and shortcuts for improving your ICT skills are highlighted in Advice boxes.

Advice
A	common	error	made	by	people	writing	algorithms	with	nested	loops	is	
not	matching	up	the	number	of	WHILE	statements	with	the	same	number	of	
ENDWHILEs.	The	same	error	can	happen	with	REPEATs	and	UNTILs.	You	must	
always	check	this	and	make	sure	they	are	correctly	indented.

Finally, each chapter ends with practice questions. These practice questions and
their sample answers, as well as the activities throughout the book have been
written by the authors.

Answers to the practice questions and activities and the source files needed
for the Student’s Book can be downloaded from www.hoddereducation.com/
cambridgeextras.

Practice questions

1	 A	collection	of	data	could	be	this:	johan,	,	$,	,	AND
	 Explain	why	they	are	regarded	as	just	items	of	data.	In	your	explanation		

give	a	possible	context	for	each	item	of	data	and	describe	how	the	items		
would	then	become	information.	 [5]

2	 A	company	uses	computers	to	process	its	payroll,	which	involves	updating		
a	master	file.
a	 State	what	processes	must	happen	before	the	updating	can	begin.	 [2]
b	 Describe	how	a	master	file	is	updated	using	a	transaction	file	in	a		

payroll	system.	You	may	assume	that	the	only	transaction	being	carried		
out	is	the	calculation	of	the	weekly	pay	before	tax	and	other	deductions.	 [6]

3 a	 Name	and	describe	three	validation	checks	other	than	a	presence		
check.	 [3]

b	 Explain	why	a	presence	check	is	not	necessary	for	all	fields.	 [3]

4	 A	space	agency	controls	rockets	to	be	sent	to	the	moon.
	 Describe	how	real-time	processing	would	be	used	by	the	agency.	 [3]

5	 Describe	three	different	methods	used	to	carry	out	verification.	 [3]

005603_FM_CAIE_AS_Level_IT_BP_i-viii.indd Page 6 23/11/23 7:02 AM F-0120 005603_FM_CAIE_AS_Level_IT_BP_i-viii.indd Page 6 23/11/23 7:02 AM F-0120 /147/HO02989/work/indd/147/HO02989/work/indd

SAMPLE PROOFS

vii

in
tR

o
D

U
C

tio
n

Text	colours
Some words or phrases within the text are printed in red. Definitions of these
terms can be found in the glossary at the back of the book. In the practical
section, words that appear in blue indicate an action or location found within
the software package, for example ‘Select the Home tab.’ In the database
sections of the book, words in orange show fieldnames. Words in green show
the functions or formulas entered into the cell of a spreadsheet, for example a
cell may contain the function =SUM(B2:B12).

Assessment
The information in this section is taken from the Cambridge International
Education syllabus. You should always refer to the appropriate syllabus document
for the year of examination to confirm the details and for more information. The
syllabus document is available on the Cambridge International Education website
at www.cambridgeinternational.org.

If you are following the AS Level part of the course, you will take two
examination papers: Paper 1 Theory (1 hour 45 minutes); Paper 2 Practical
(2 hours 30 minutes).

Command	words
The table below, taken from the syllabus, includes command words used in the
assessment for this syllabus. The use of the command word will relate to the
subject context. Make sure you are familiar with these.

Command word What it means
Analyse Examine in detail to show meaning, identify elements and the

relationship between them

Assess Make an informed judgement

Compare Identify/comment on similarities and/or differences

Contrast Identify/comment on differences

Define Give precise meaning

Describe State the points of a topic/give characteristics and main features

Discuss Write about issue(s) or topic(s) in depth in a structured way

Evaluate Judge or calculate the quality, importance, amount or value of something

Explain Set out purposes or reasons/make the relationships between things
clear/say why and/or how and support with relevant evidence

Identify Name/select/recognise

Justify Support a case with evidence/argument

State Express in clear terms

Suggest Apply knowledge and understanding to situations where there is a range
of valid responses in order to make proposals/put forward considerations

005603_FM_CAIE_AS_Level_IT_BP_i-viii.indd Page 7 23/11/23 7:02 AM F-0120 005603_FM_CAIE_AS_Level_IT_BP_i-viii.indd Page 7 23/11/23 7:02 AM F-0120 /147/HO02989/work/indd/147/HO02989/work/indd

SAMPLE PROOFS

viii

in
tR

o
D

U
C

ti
o

n Notes	for	teachers
Key	concepts
These are the essential ideas that help learners to develop a deep
understanding of the subject and to make links between the different topics.
Although teachers are likely to have these in mind at all times when they are
teaching the syllabus, the following icons are included in the textbook at points
where the key concepts relate to the text (note that not all of these key concepts
are relevant to the AS Level course and some will only feature in the A Level
book).

Hardware and software
Hardware and software interact with each other in an IT system. It is
important to understand how these work and how they work together with
each other and with us in our environment.

Networks
Computer systems can be connected together to form networks allowing
them to share data and resources. The central role networks play in the
internet, mobile and wireless applications and cloud computing has rapidly
increased the demand for network capacity and performance.

The internet
The internet is a global communications network. It uses standardised
communications protocols to allow computers worldwide to connect and
share information in many different forms. The impact of the internet on our
lives is profound. While the services the internet supports can provide huge
benefits to society they have also introduced issues, for example security
of data.

System life cycle
Information systems are developed within a planned cycle of stages. They
cover the initial development of the system and continue through to its
scheduled updating or redevelopment.

New technologies
As the information industry changes so rapidly, it is important to keep track
of new and emerging technologies and consider how they might affect
everyday life.

Additional	support
The Cambridge International AS Level Information Technology Skills
Workbook is a write-in resource designed to be used throughout the course.
It provides students with extra opportunities to test their understanding of
the knowledge and skills required by the syllabus.

005603_FM_CAIE_AS_Level_IT_BP_i-viii.indd Page 8 23/11/23 7:02 AM F-0120 005603_FM_CAIE_AS_Level_IT_BP_i-viii.indd Page 8 23/11/23 7:02 AM F-0120 /147/HO02989/work/indd/147/HO02989/work/indd

SAMPLE PROOFS

98

4
A

lg
o

r
it

h
m

s
A

n
d

 f
lo

w
c

h
A

r
ts

 4 Algorithms and flowcharts

4.1 Algorithms
Before we look at how to write or edit an algorithm, let us consider what is
meant by an algorithm. In computer science, information technology and
mathematics, an algorithm is a set of instructions sequenced to solve a problem
or to represent a calculation. Some would say that an algorithm is basically a data
or program flowchart without the boxes. It is actually a list of precise steps.
The order in which these steps are carried out is always crucial to the way an
algorithm works. We start at the first line of the algorithm and work downwards
to the final instruction. When an algorithm is created to produce information,
data is input, processed, then the result is output. An algorithm must be carefully
designed. It must be written in a way that caters for all possible scenarios. Any
steps that rely on decisions being made must be dealt with in sequence and
the conditions must be clear and unambiguous. Depending on the way the
algorithm is written, not all instructions are carried out for a particular scenario,
but they still have to be written in a way that allows for all possible scenarios.

Algorithms can be written in many different ways, including everyday natural
language, pseudocode, flowcharts or programming languages. Natural
language can sometimes lead to instructions which are open to interpretation
and so tends not to be used in very complex algorithms. Pseudocode and
flowcharts are structured ways of writing algorithms and we will concentrate on
these approaches. Programming languages are primarily intended for converting
algorithms to a form that can be understood and executed by a computer.

When solving problems in this chapter, the algorithms will be written in
pseudocode. Pseudocode is independent of any programming language. Once
the pseudocode is written and checked to make sure that it solves the problem,

In this chapter you will learn how to:
★	 write	a	basic	algorithm	that	demonstrates	a	

decision-making	process
★	 use	conditional	branching	within	an	

algorithm
★	 use	loops	within	an	algorithm
★	 use	nested	loops	within	an	algorithm
★	 include	procedures/subroutines	within	an	

algorithm
★	 edit	a	given	algorithm

★	 write	an	algorithm	to	solve	a	given	problem
★	 edit	a	given	flowchart
★	 draw	a	basic	program	flowchart	that	

demonstrates	a	decision-making	process
★	 draw	a	program	flowchart	to	solve	a	given	

problem
★	 identify	errors	in	an	algorithm	or	program	

flowchart	for	a	given	scenario.

Before starting this chapter you should understand the:
★	 comparison	operators	>,	<,	=
★	 arithmetic	operators	+,	-,	*,	/
★	 order	of	arithmetical	operations	in	an	equation.

005603_04_CAIE_AS_Level_IT_BP_098-119.indd Page 98 23/11/23 7:22 AM F-0120 005603_04_CAIE_AS_Level_IT_BP_098-119.indd Page 98 23/11/23 7:22 AM F-0120 /147/HO02989/work/indd/147/HO02989/work/indd

SAMPLE PROOFS

99

4.1 Algorithm
s

4
it would be fairly straightforward to translate it into any programming language
we were familiar with.

Any algorithm consists of statements which have linear progression, that is the
result of one statement is used in the statements that follow. It may also contain
conditional branching, such as IF…THEN…ELSE or CASE…ENDCASE,
which results in a decision being made between two or more courses of actions.
It will probably also involve the use of loops such as WHILE…ENDWHILE
or REPEAT…UNTIL. A loop is a sequence of statements that are repeated a
number of times.

Here are some key actions that are performed and the common terms used
in pseudocode:

» inputting data: INPUT or READ
» outputting data: WRITE or PRINT
» calculation: +, -, *, /
» comparison: >, <, =, <>
» setting values: ←

Do not worry if you have not met some of these before as we will be going into
much greater detail when we begin to write our own algorithms.

4.1.1	Writing	an	algorithm
By the end of this chapter, you will be able to write a basic algorithm that
demonstrates a decision-making process. In order for you to be able to do this
you will need to become familiar with a number of pseudocode terms. One of
the most basic units of an algorithm is a variable. It is best to think of a variable
as an area of the computer’s memory that stores one item of data, such as a
number. The algorithm designer is able to choose the names of the variables,
making writing an algorithm easier, and also it is possible to write an algorithm
where we can change the values each time we work the algorithm. Assigning
a value to a variable name can be done using an arrow symbol, ←. The variable
name is to the left of the sign and the value is to the right, for example:

X ← 42

means we want to store the number 42 in X.

We can also assign calculations and other types of processing this way,
for example:

Z ← W + X + Y

This assigns the result of adding the contents of W, X and Y together and stores
the result of this calculation in Z.

Input and output
Consider your use of calculators. When you want to do a calculation such as
42 × 36, three things have to happen. First of all, you have to type in the numbers,
then the calculator’s internal computer calculates the answer and finally it outputs
the answer on the screen. The last two occur so quickly that you probably do not
realise that the calculation occurs before the answer appears on the screen.

005603_04_CAIE_AS_Level_IT_BP_098-119.indd Page 99 23/11/23 7:22 AM F-0120 005603_04_CAIE_AS_Level_IT_BP_098-119.indd Page 99 23/11/23 7:22 AM F-0120 /147/HO02989/work/indd/147/HO02989/work/indd

SAMPLE PROOFS

100

4
A

lg
o

r
it

h
m

s
A

n
d

 f
lo

w
c

h
A

r
ts

4
If we were writing an algorithm to describe this calculation it would simply be:

INPUT X, Y // input two numbers, one is X, the other is Y

Z ← X*Y // multiply the two numbers and call the answer Z

PRINT Z // output the answer Z

It is written like this so that X and Y represent any two numbers.

We can think of Z as somewhere we store the result of X multiplied by Y.

The last line causes the answer (Z) to be output.

Notice we have used // to make comments. This just helps us to see what is
going on but is not part of an instruction to be carried out.

If we use 42 and 36 as our numbers, Z would be 42*36, which is 1512.

We could use any letters or words instead of X, Y and Z.

We could have written:

INPUT firstnumber, secondnumber

answer ← firstnumber*secondnumber

PRINT answer

This is an example of how writing an algorithm can be made simpler just by
using variable names that make sense and result in the algorithm being easier
to follow. Always try to use variable names which give a clue to what they
are storing.

The last statement could also be written as:

PRINT "The answer is", answer

This would result, using our calculation, in the following output:

The answer is 1512

Conditional branching
This is sometimes referred to as selection. Conditional branching means that
certain statements are carried out depending on the value stored within a
particular variable name. There are generally considered to be two types, which
are IF…THEN…ELSE and CASE…ENDCASE.

IF…THEN…ELSE
From now on, whenever you see words within angle brackets, this is just an
explanation of what you will be typing in and not the exact words themselves,
for example <statement> would mean that a statement must go here, such as:

A ← B+C

005603_04_CAIE_AS_Level_IT_BP_098-119.indd Page 100 23/11/23 7:22 AM F-0120 005603_04_CAIE_AS_Level_IT_BP_098-119.indd Page 100 23/11/23 7:22 AM F-0120 /147/HO02989/work/indd/147/HO02989/work/indd

SAMPLE PROOFS

101

4.1 Algorithm
s

4
Sometimes, IF statements do not have an ELSE part, such as in this sequence
of instructions:

IF <condition>

 THEN

 <statement or list of statements to be carried out>

ENDIF

An example of this type is:

INPUT number1, number2

X ← number1/number2

 IF number2 > number1

 THEN

 X ← number2/number1

 ENDIF

PRINT X

Here, two numbers are input and the first number is divided by the second
number, with the result being stored in X. The IF condition checks to see if
the second number is bigger than the first. If it is, then the second number
is divided by the first number and that result is stored in X, overwriting the
previous result. If it is not, then X remains unchanged. The value in X is
then output.

It is important to note that IF statements are slightly indented. It does not
matter how much the indentation is, as long as you are consistent and use the
same amount of indentation for each IF.

THEN statements are further indented and again, you just need to be
consistent. The statement after THEN is further indented. ENDIF must always
be in line with the IF statement. Any statements that come after ENDIF are
not indented.

IF statements with an ELSE clause are written as follows:

IF <condition>

 THEN

 <statement or list of statements to be carried out>

 ELSE

 <alternative statement or list of alternative statements to be
carried out>

ENDIF

005603_04_CAIE_AS_Level_IT_BP_098-119.indd Page 101 23/11/23 7:22 AM F-0120 005603_04_CAIE_AS_Level_IT_BP_098-119.indd Page 101 23/11/23 7:22 AM F-0120 /147/HO02989/work/indd/147/HO02989/work/indd

SAMPLE PROOFS

102

4
A

lg
o

r
it

h
m

s
A

n
d

 f
lo

w
c

h
A

r
ts

4
Using our example above, a better way of writing the algorithm would be:

INPUT number1, number2
 IF number2 > number1
 THEN
 X ← number2/number1
 ELSE
 X ← number1/number2
 ENDIF
PRINT X

Here, as before, the value of X is the bigger of the two numbers divided by the
smaller number.

The algorithm inputs two numbers. It checks to see if the second number is
bigger than the first and if it is then it divides the second number by the first
number, storing the answer in X. If it is not bigger (ELSE) it divides the first
number by the second number, storing the answer in X.

Again, it is important to note the indents and the fact that ELSE is immediately in line
with THEN. The statement below THEN is in line with the statement below ELSE.

Sometimes it is necessary to have what are called nested IF statements. This is an
IF condition within another IF. You will have met these when using spreadsheet
software during your practical lessons.

Let us consider an exam system where if a student gains 75 or more marks they are
awarded a distinction; if they get between 60 and 74 marks they are awarded a merit;
between 40 and 59 marks the student is awarded a pass; otherwise they fail the course.

This is the type of problem which requires nested IF statements to solve it. One
solution is as follows:

1 INPUT mark

2 IF mark <75

3 THEN

4 IF mark <60

5 THEN

6 IF mark <40

7 THEN

8 PRINT "Sorry you have failed"

9 ELSE

10 PRINT "You have passed"

11 ENDIF

12 ELSE

13 PRINT "Well done. You have been awarded a merit"

14 ENDIF

15 ELSE

16 PRINT "Congratulations you have been awarded a distinction"

17 ENDIF

005603_04_CAIE_AS_Level_IT_BP_098-119.indd Page 102 23/11/23 7:22 AM F-0120 005603_04_CAIE_AS_Level_IT_BP_098-119.indd Page 102 23/11/23 7:22 AM F-0120 /147/HO02989/work/indd/147/HO02989/work/indd

SAMPLE PROOFS

103

4.1 Algorithm
s

4
Each line of pseudocode is numbered. This does not normally tend to be the
case but it has been done here to make the explanation of this algorithm easier
to follow.

Consider marks of 34, 45, 62 and 78. We will work through the algorithm for
each mark.

With an IF statement we follow the THEN part when the IF statement is true
but we only follow the ELSE part if the IF statement is false.

For the first mark of 34:

Statement 1 will store 34 in the variable name ‘mark’.

Statement 2 is true so we go on to statements 3 and 4.

Statement 4 is true so we go on to statements 5 and 6.

Statement 6 is also true so we move on to statements 7 and 8, which cause the
message ‘Sorry you have failed’ to be printed out.

We can go on to statement 11 as we can ignore statements 9 and 10 which are
only followed if statement 6 was false.

Statement 11 is just there to tell us that statement 6 is now closed.

We can ignore statements 12 and 13 which would only be followed if statement
4 were false.

Statement 14 tells us we have reached the end of the IF in statement 4.

Again, we can ignore statements 15 and 16 as statement 2 is not false, which
brings us to statement 17, which shows us that we have reached the end of the
whole sequence of the nested IF.

Briefly then, for the mark of 45, statements 2 and 4 are true, so we reach
statement 6 which is false. As a result, we jump to the ELSE statement 9 and
reach statement 10 which causes the message ‘You have passed’ to be printed
out. We then ignore all the remaining ELSE statements.

For the mark of 62, statement 2 is true but statement 4 is false, so we jump to
the corresponding ELSE statement to the line 5 THEN statement, which is
line 12. That causes us to go on to line 13, which causes the message ‘Well
done. You have been awarded a merit’ to be printed out.

For the mark of 78, line 2 is false so we jump straight to the corresponding
ELSE statement in line 15 which leads to line 16 being printed out
‘Congratulations you have been awarded a distinction’ and then we reach
line 17.

Always make sure that the number of ENDIFs matches the number of IFs and
that they are indented to match. Always make sure the ELSEs are in line with
the THENs.

CASE…ENDCASE
With this type of condition, depending on the value input, the algorithm carries
out one of a number of statements. The condition can be phrased differently
but we shall use CASE <identifier> OF, though some would use CASE OF
<identifier>. Whichever you choose to use, just be consistent.

The value input is usually a number which then determines which statement will
be carried out.

005603_04_CAIE_AS_Level_IT_BP_098-119.indd Page 103 23/11/23 7:22 AM F-0120 005603_04_CAIE_AS_Level_IT_BP_098-119.indd Page 103 23/11/23 7:22 AM F-0120 /147/HO02989/work/indd/147/HO02989/work/indd

SAMPLE PROOFS

104

4
A

lg
o

r
it

h
m

s
A

n
d

 f
lo

w
c

h
A

r
ts

4
CASE <identifier> OF

 <value 1> : <statement or list of statements>

 <value 2> : <statement or list of statements>

 OTHERWISE : <statement or list of statements>

ENDCASE

Depending on the value entered, either one statement or several statements can
be carried out. For example:

INPUT grade

CASE grade OF

 'distinction': X ← 75

 Y ← 100

 'merit': X ← 60

 Y ← 74

 'pass': X ← 40

 Y ← 59

 'fail': X ← 0

 Y ← 39

ENDCASE

PRINT "Your mark must have been between ",X, " and ",Y

This algorithm allows you to type in your grade as a word. The values of
X and Y are set accordingly depending on the word you type in. The range
of marks that your mark must have been within is then printed out after
the phrase ‘Your mark must have been between’. Note the comma after the
quotation marks. Commas are used to separate variable names from the
words that are printed out.

For example, if ‘distinction’ is typed in, then X is set to 75 and Y is set to 100
and the algorithm jumps immediately to ENDCASE and then prints out the
message: ‘Your mark must have been between 75 and 100’.

Notice neither the quotes nor the commas are printed out.

If the word ‘merit’ had been typed in then the first case (‘distinction’) is ignored
and the second case is carried out, then it jumps to ENDCASE and prints out
the appropriate message. With ‘pass’, it goes straight to the third case then
ENDCASE before printing the message, and with ‘fail’, it goes to the fourth
case then ENDCASE and prints out the message.

It is quite common for CASE…ENDCASE to have numbers input and the
appropriately numbered CASE statement to be carried out. Here is an example
which includes an OTHERWISE statement.

005603_04_CAIE_AS_Level_IT_BP_098-119.indd Page 104 23/11/23 7:22 AM F-0120 005603_04_CAIE_AS_Level_IT_BP_098-119.indd Page 104 23/11/23 7:22 AM F-0120 /147/HO02989/work/indd/147/HO02989/work/indd

SAMPLE PROOFS

105

4.1 Algorithm
s

4
INPUT number

CASE number OF

 1 : PRINT "This is the number 1"

 2 : PRINT "This is the number 2"

 OTHERWISE: PRINT "You have entered an unacceptable number"

ENDCASE

The OTHERWISE case must always be the last case statement.

There are a number of variations of the CASE…ENDCASE statement but
you will need to be consistent with your use of any variation to the method
given above.

Activity 4a
1 Write an algorithm using IF…THEN which will input a number, then print out

the number multiplied by 8 if it is less than 3, multiplied by 4 if it is between 3
and 5, and multiplied by 2 if it is any other number.

2 Write an algorithm using CASE…ENDCASE which will input a number,
then print out the number divided by 2 if it is less than 6, divided by 5 if it is
between 6 and 10, and divided by 10 if it is any other number.

Loops
When referring to the writing of computer programs or algorithms, a loop is
a sequence of repeated statements that are carried out a number of times. This
number may be just one or it can be a very large number, depending on the
problem which needs solving. There are three ways a loop operates.

» One way is to use a count-controlled loop. The first statement in the loop
specifies the size of the loop (how many times the subsequent statements are
to be carried out). The final statement in the loop is just a marker so that the
first statement is then returned to. The statements in the loop are repeatedly
carried out until the number of times the statements within the loop are to
be carried out (as shown in the first statement) has been met.

» Another way is sometimes referred to as a pre-condition loop, meaning
the conditional statement is checked before (pre) any of the sequence of
statements is followed. This is when a condition is checked to see if it is met
and if it is, the sequence of statements is carried out. When the last statement
is reached, the conditional statement is returned to. The condition is checked
again and the whole process is repeated. Once the condition has not been
met, it jumps to the last statement and exits the loop.

» The third type of loop is sometimes referred to as a post-condition loop.
As its name suggests, the conditional statement is only checked after the
sequence has been carried out for the first time. If the condition is not met,
then the first statement is returned to. This is repeated until the condition
is met, in which case the next statement after the close of the loop is carried
out. The loops which will be described here are the WHILE…ENDWHILE
loop (a pre-condition loop) and the REPEAT…UNTIL loop (a post-
condition loop).

Before describing the different types of loop, the concept of counting within
an algorithm has to be considered. If a loop is to be repeated a certain number

005603_04_CAIE_AS_Level_IT_BP_098-119.indd Page 105 23/11/23 7:22 AM F-0120 005603_04_CAIE_AS_Level_IT_BP_098-119.indd Page 105 23/11/23 7:22 AM F-0120 /147/HO02989/work/indd/147/HO02989/work/indd

SAMPLE PROOFS

106

4
A

lg
o

r
it

h
m

s
A

n
d

 f
lo

w
c

h
A

r
ts

4
of times, it is usual to set up a counter. This usually involves the initialising of a
variable (setting it to 0). The variable name used is often just ‘count’. It is quite
common for the first statement in any algorithm to be:

count ← 0

This count is then incremented (increased by 1) every time a sequence of
statements is carried out.

count ← count + 1

The loop can then be set up to be executed an exact number of times. This is
done by basing the conditional statement on whether the count has reached the
number of times we want the loop to be carried out.

Although, as we shall see, it is possible to have WHILE…ENDWHILE and
REPEAT…UNTIL loops which use counts, these loops can be controlled using
other means. The condition that has to be met doesn’t necessarily have to involve a
count. The FOR…NEXT loop on the other hand is purely a count-controlled loop.

FOR…NEXT
The FOR…NEXT loop looks like this

FOR <identifier> ← <lowvalue> TO <highvalue>

 <a statement or a list of statements to be carried out>

NEXT <identifier>

The identifier, lowvalue and highvalue must all be integers.

If lowvalue = highvalue then the statements are carried out once only. If
lowvalue is greater than highvalue then the statements are not carried out. The
NEXT instruction adds one to the count and goes back to the FOR statement.

When highvalue is greater than lowvalue (which is normally the case), the value
of the identifier is set to that of the lowvalue and the statement or statements are
carried out. The identifier’s value then increases by one (it increments) and then
the statements are carried out again. This process is repeated until the value of
the identifier is the same as highvalue and the statement(s) are carried out for
the final time.

An example of a FOR…NEXT algorithm would be.

INPUT number

FOR count ← 1 TO number

 PRINT count, “x 8 = “, count * 8

NEXT count

This algorithm takes as input the number of times the loop is to be carried out –
‘number’. As long as the value of ‘number’ is a whole number greater than 0 it
carries out the PRINT statement. To begin with, providing the number which
has been input is a whole number greater than one, the identifier ‘count’ is set
to 1 and the NEXT statement increases it by 1. When the count is equal to the
value of ‘number’ the statement is carried out one more time before leaving the

005603_04_CAIE_AS_Level_IT_BP_098-119.indd Page 106 23/11/23 7:22 AM F-0120 005603_04_CAIE_AS_Level_IT_BP_098-119.indd Page 106 23/11/23 7:22 AM F-0120 /147/HO02989/work/indd/147/HO02989/work/indd

SAMPLE PROOFS

107

4.1 Algorithm
s

4
loop except, of course, if the number input is 1. This algorithm is printing out
the multiplication table for 8, often called the 8 times table, up to the number
that is input. If the number input was 5 it would calculate 1*8, 2*8, 3*8, 4*8
and finally 5*8 before exiting the loop.

FOR…NEXT…STEP
It is possible to write a counting algorithm where the count does not increase by
one every time but another number.

This looks like:

FOR <identifier> ← <lowvalue> TO <highvalue> STEP <incremental value>

 <a statement or a list of statements to be carried out>

NEXT <identifier>

The incremental value must be an integer such as 2, 3, 4, etc. The identifier will
be given the values from lowvalue in successive increments of incremental value
until it reaches highvalue. If identifier becomes greater than the highvalue, the
loop stops without carrying out any more statements. For example, FOR count
← 1 TO 12 STEP 3 would result in count taking the values 1, 4, 7, 10, 13 on
successive runs of the algorithm but when it got to count being 13 it would stop
without carrying out the statements.

The incremental value can be negative. For example,

INPUT number

FOR count ← number TO 1 STEP -1

PRINT count, “x 8 = “, count * 8

NEXT count

If we input the number as 5, this would produce the 8 times table but written
backwards. It would calculate 5*8, 4*8, 3*8, 2*8 and finally 1*8 before exiting
the loop.

WHILE…ENDWHILE
The WHILE…ENDWHILE loop looks like this:

WHILE <condition>

 <a statement or a list of statements to be carried out>

ENDWHILE

Some variations of this loop have the word ‘DO’ after the condition:

WHILE <condition> DO

We will not be using this in this book.

While the condition is met, the statements between the WHILE and
ENDWHILE statements will be carried out. As soon as the conditional
statement stops being true, the loop ends.

005603_04_CAIE_AS_Level_IT_BP_098-119.indd Page 107 23/11/23 7:22 AM F-0120 005603_04_CAIE_AS_Level_IT_BP_098-119.indd Page 107 23/11/23 7:22 AM F-0120 /147/HO02989/work/indd/147/HO02989/work/indd

SAMPLE PROOFS

108

4
A

lg
o

r
it

h
m

s
A

n
d

 f
lo

w
c

h
A

r
ts

4
An example of a WHILE…ENDWHILE algorithm using a counter would be:

count ← 0

INPUT number

WHILE count < number

 count ← count + 1

 PRINT count, "x 10 = ", count*10

ENDWHILE

This algorithm takes as input the number of times the loop is to be
executed – ‘number’. It checks whether the count is less than this number
before proceeding with the sequence of statements to be carried out. The
first statement increments the counter so that it goes up by one before the
calculation is performed. This algorithm is printing out the multiplication table
for 10, often called the 10 times table, up to the number that is input. If the
number input was 6 it would calculate 1*10, 2*10, 3*10, 4*10, 5*10 and finally
6*10 before exiting.

REPEAT…UNTIL
Unlike the WHILE…ENDWHILE loop, which tests the condition at the start
of the loop, the REPEAT…UNTIL loop checks the condition at the end of the
loop. It is similar to a WHILE…ENDWHILE loop, except that a REPEAT…
UNTIL loop is executed at least once.

The REPEAT…UNTIL loop looks like this:

REPEAT

 <a statement or a list of statements to be carried out>

UNTIL <condition>

The statements between the REPEAT and UNTIL are carried out and from
then on, for as long as the UNTIL condition is not met, they will be repeated.
After the first time, they will only be carried out while the conditional
statement is false. As soon as the condition becomes true, the loop ends.

We can convert the example above which uses the WHILE…ENDWHILE loop
into the following:

count ← 0

INPUT number

REPEAT

 count ← count + 1

 PRINT count, "x 10 = ", count*10

UNTIL count = number

005603_04_CAIE_AS_Level_IT_BP_098-119.indd Page 108 23/11/23 7:22 AM F-0120 005603_04_CAIE_AS_Level_IT_BP_098-119.indd Page 108 23/11/23 7:22 AM F-0120 /147/HO02989/work/indd/147/HO02989/work/indd

SAMPLE PROOFS

109

4.1 Algorithm
s

4
The only difference is that if you did not want anything printed out, you could
type in 0 for the number. With the WHILE…ENDWHILE loop it would print
nothing out. With the REPEAT…UNTIL loop it would print out:

1 x 10 = 10

despite the fact we might not want it to. This is a big disadvantage of the
REPEAT…UNTIL loop, but as long as you want the loop to be executed at
least once, it works well.

You may use another technique for finishing a loop. You can come out of a loop
by inputting a rogue value (i.e. a value that is out of the ordinary). For example,
supposing you needed to write an algorithm which added up a set of numbers.
If all the numbers to be added consisted of numbers less than 100 you could
end the loop by inputting a rogue value such as 999 as follows.

Total ← 0

number ← 0

WHILE number <> 999

total ← total + number

INPUT number

ENDWHILE

PRINT total

When the WHILE condition is met for the first time the value of number is
0, so the statements within the loop are executed. It will only terminate when
number is 999. It will carry on increasing the total by adding the number that is
input each time. As soon as 999 is input the loop stops and the total is output.
The equivalent REPEAT…UNTIL algorithm would be:

Total ← 0

number ← 0

REPEAT

total ← total + number

INPUT number

UNTIL number = 999

PRINT total

Notice that in order to avoid adding 999 to the total, the input occurs after
the total has been increased. The total has to be increased by the value of the
number even when the number is equal to 0, which it is on the first pass.

005603_04_CAIE_AS_Level_IT_BP_098-119.indd Page 109 23/11/23 7:22 AM F-0120 005603_04_CAIE_AS_Level_IT_BP_098-119.indd Page 109 23/11/23 7:22 AM F-0120 /147/HO02989/work/indd/147/HO02989/work/indd

SAMPLE PROOFS

110

4
A

lg
o

r
it

h
m

s
A

n
d

 f
lo

w
c

h
A

r
ts

4
Nested	loops
A nested loop, as its name suggests, is a loop within a loop. Let us start
with an example. We have already seen an algorithm which can output a
multiplication table. Now we will look at an algorithm which will output
several multiplication tables.

count1 ← 0

INPUT number1 // this is the number of multiplication tables
printed out

INPUT number2 // this is the number we want to go up to in
each table

WHILE count1 < number2

 count1 ← count1 + 1 // count1 is incremented so we do not
get 0 × 0

 count2 ← 0

 WHILE count2 < number1

 count2 ← count2 + 1 // count2 is incremented so we do not get 1 × 0
 PRINT count1, "x ", count2, "= ", count1*count2

 ENDWHILE

ENDWHILE

The variable number1 is the number of multiplication tables we want and
number2 is how far we want the table to go up to. For example, if 6 is input for
number1, then the 1, 2, 3, 4, 5 and 6 multiplication tables will be printed out,
and if 12 is input for number2 each table will go up to 12×.

Notice that both count1 and count2 are incremented immediately after the loop
starts to prevent the algorithm from printing out 0×1 or 1×0. The WHILE…
statement only checks whether the condition is met before the loop is allowed
to start. When count2 gets to 6, it will have already printed out 1×6 and the
count1 loop will increment then count2 will be set back to 0. This is repeated
until count1 is 12 and count2 is 6.

The final output would be:

1 × 1 = 1 1 × 2 = 2 1 × 3 = 3 1 × 4 = 4 1 × 5 = 5 1 × 6 = 6

2 × 1 = 2 2 × 2 = 4 2 × 3 = 6 2 × 4 = 8 2 × 5 = 10 2 × 6 = 12

3 × 1 = 3 3 × 2 = 6 3 × 3 = 9 3 × 4 = 12 3 × 5 = 15 3 × 6 = 18

4 × 1 = 4 4 × 2 = 8 4 × 3 = 12 4 × 4 = 16 4 × 5 = 20 4 × 6 = 24

5 × 1 = 5 5 × 2 = 10 5 × 3 = 15 5 × 4 = 20 5 × 5 = 25 5 × 6 = 30

6 × 1 = 6 6 × 2 = 12 6 × 3 = 18 6 × 4 = 24 6 × 5 = 30 6 × 6 = 36

7 × 1 = 7 7 × 2 = 14 7 × 3 = 21 7 × 4 = 28 7 × 5 = 35 7 × 6 = 42

8 × 1 = 8 8 × 2 = 16 8 × 3 = 24 8 × 4 = 32 8 × 5 = 40 8 × 6 = 48

9 × 1 = 9 9 × 2 = 18 9 × 3 = 27 9 × 4 = 36 9 × 5 = 45 9 × 6 = 54

10 × 1 = 10 10 × 2 = 20 10 × 3 = 30 10 × 4 = 40 10 × 5 = 50 10 × 6 = 60

11 × 1 = 11 11 × 2 = 22 11 × 3 = 33 11 × 4 = 44 11 × 5 = 55 11 × 6 = 66

12 × 1 = 12 12 × 2 = 24 12 × 3 = 36 12 × 4 = 48 12 × 5 = 60 12 × 6 = 72

The same output would be produced using the following nested REPEAT…
UNTIL loop:

005603_04_CAIE_AS_Level_IT_BP_098-119.indd Page 110 23/11/23 7:22 AM F-0120 005603_04_CAIE_AS_Level_IT_BP_098-119.indd Page 110 23/11/23 7:22 AM F-0120 /147/HO02989/work/indd/147/HO02989/work/indd

SAMPLE PROOFS

111

4.1 Algorithm
s

4
count1 ← 0

INPUT number1

INPUT number2

REPEAT

 count1 ← count1 + 1

 count2 ← 0

 REPEAT

 count2 ← count2 + 1

 PRINT count1, "x ", count2, "= ", count1*count2

 UNTIL count2 = number1

UNTIL count1 = number2

The equivalent nested FOR…NEXT loop could be:

INPUT number1, number2

FOR count1 ← 1 TO number1

 FOR count2 ← 1 TO number2

 PRINT count1, “x”, count2, “ = “, count1*count2

 NEXT count2

NEXT count1

Advice
Common errors
An error sometimes made by people writing algorithms with nested loops is
not matching up the number of WHILE statements with the same number of
ENDWHILEs. The same error can happen with REPEATs and UNTILs. You must
always check this and make sure they are correctly indented.

An IF statement checks if something is true and if it is, it carries out a matching
statement. As we have seen above, if it is not true, the algorithm will either
carry on or have an alternative statement to carry out which requires an ELSE
statement. Sometimes, people forget to include a matching ELSE statement.

Procedures/subroutines
When writing algorithms, it is often good practice to use subroutines, which
are sometimes called procedures, although technically a procedure is a subset of
subroutines. A subroutine is a sequence of algorithm statements that perform a
specific task. This subroutine can then be used in other algorithms as and when
needed.

The subroutines or procedures follow the following pattern:

PROCEDURE <value>

 <a statement or list of statements>

ENDPROCEDURE

005603_04_CAIE_AS_Level_IT_BP_098-119.indd Page 111 23/11/23 7:22 AM F-0120 005603_04_CAIE_AS_Level_IT_BP_098-119.indd Page 111 23/11/23 7:22 AM F-0120 /147/HO02989/work/indd/147/HO02989/work/indd

SAMPLE PROOFS

112

4
A

lg
o

r
it

h
m

s
A

n
d

 f
lo

w
c

h
A

r
ts

4
Let us consider a house builder who needs to know the area of the top part
of a brick wall underneath the roof. He or she wants to calculate the number
of bricks to be used. Such a house is shown in the figure below, with the area
which needs to be calculated indicated as a red triangle. The other areas which
would need to be calculated are rectangle shapes. An algorithm can be written
to work out these areas and this could then be used to calculate the number of
bricks needed. This could all be done by using simple subroutines.

The subroutines or procedures could be simply written as:

PROCEDURE triangle(width, height)

 area ← width*height*0.5

 PRINT area

ENDPROCEDURE

PROCEDURE rectangle(length, width)

 area ← length*width

 PRINT area

ENDPROCEDURE

The main algorithm could be:

INPUT width, height // type in the height and width of
the triangle

CALL triangle (width, height) // this would print out the area
INPUT number // type in the number of walls

count ← 0

WHILE count < number

 INPUT length, height

 count ← count + 1

 CALL rectangle (length, height) // this would print out the area of
each wall

ENDWHILE

005603_04_CAIE_AS_Level_IT_BP_098-119.indd Page 112 23/11/23 7:22 AM F-0120 005603_04_CAIE_AS_Level_IT_BP_098-119.indd Page 112 23/11/23 7:22 AM F-0120 /147/HO02989/work/indd/147/HO02989/work/indd

SAMPLE PROOFS

113

4.1 Algorithm
s

4
Notice that although we used length and width as the variable names when we set
up the rectangle procedure, we can use different variable names when we ‘CALL’ it.
As long as we ‘pass’ two numbers to the procedure, it will perform the calculation.

Once the procedure or subroutine is set up, it can be called as many times as
we want.

File handling
There are a number of file-handling functions used in pseudocode, but they are
really outside the scope of this book. However, you will need to demonstrate
an understanding of how file handling works, without necessarily knowing the
technical terms. Let us consider the very basic algorithm that was constructed in
Chapter 1.

1 First record in the transaction file is read

2 First record in the old master file is read

3 REPEAT

4 IDs are compared

5 IF IDs do not match, old master file record is written to new master
file

6 IF IDs match transaction is carried out

7 IF transaction is D or C, old master file record is not written
to new master file

8 IF transaction is C, data in transaction file is written to new
master file

9 IF IDs match, next record from transaction file is read

10 Next record from master file is read

11 UNTIL end of old master file

12 Data in transaction file record is written to new master file

13 Any remaining records of the transaction file are written to the
master file

You should now be able to convert it into a properly structured algorithm such
as this (notice we are using command words for the file input – READ and
output – WRITE):

005603_04_CAIE_AS_Level_IT_BP_098-119.indd Page 113 23/11/23 7:22 AM F-0120 005603_04_CAIE_AS_Level_IT_BP_098-119.indd Page 113 23/11/23 7:22 AM F-0120 /147/HO02989/work/indd/147/HO02989/work/indd

SAMPLE PROOFS

114

4
A

lg
o

r
it

h
m

s
A

n
d

 f
lo

w
c

h
A

r
ts

4
READ first record from the transaction file
READ first record from the old master file
REPEAT
 IF ID of old master file record <> ID of transaction file record
 THEN
 WRITE old master file record to new master file
 ELSE
 IF transaction = C
 THEN
 WRITE data in transaction file record to new master file
 ENDIF
 READ next record from transaction file
 ENDIF
 READ next record from master file
UNTIL end of old master file
WRITE data in transaction file record to new master file
WRITE any remaining transaction file records to the master file

4.2 Flowcharts
There is another way of writing an algorithm and that is by using a program
flowchart. A program flowchart is a diagrammatic way of representing an algorithm
used to produce the solution to a problem. A flowchart consists of symbols,
connected to each other by arrows which indicate the path to be followed when
working through the flowchart. Each different shape symbol represents a different
stage in the process. From now on when we mention the word flowchart we are
referring to program flowchart. This is not the same as a system flowchart, which
you will meet in the A2 text book. Below is a list of the more common symbols.
▼	Table 4.1	Common	flowchart	symbols

Input/output This shape symbol represents input or output. It is equivalent
to either the INPUT or PRINT statement.

Decision This is a decision box and is equivalent to the IF statement but
is also used in loops.

Terminator
(Start/Stop)

This is the symbol used to show where the flowchart begins
and also where it ends. It is also used at the start and end of
a subroutine.

Process box This symbol represents any calculation or assigning of
variables, usually contains the ← symbol.

Subroutine This is the symbol used to call a subroutine from the main
flowchart. It is equivalent to CALL.

Flow line This is the symbol that shows which direction you should follow
when working through the flowchart.

Connector
A

Sometimes a flowchart can extend over many pages. This
symbol indicates the continuation of the flowchart.

005603_04_CAIE_AS_Level_IT_BP_098-119.indd Page 114 23/11/23 7:22 AM F-0120 005603_04_CAIE_AS_Level_IT_BP_098-119.indd Page 114 23/11/23 7:22 AM F-0120 /147/HO02989/work/indd/147/HO02989/work/indd

SAMPLE PROOFS

115

4.2 Flow
charts

4
Sometimes flowcharts are so complex that they occupy more than one page. To
illustrate this, let us imagine that the central heating system flowchart shown in
Chapter 3 has been extended. Here it is, labelled.

Start

Stop

Is
system switched

on?

Is
temperature <

pre-set?

INPUT
temperature

Yes

Yes

No

No

Send signal
to open valves

Send signal to
close valves

Send signal to
switch pump off

Send signal to
switch pump on

These are connector symbols

These are
terminator symbols

These are
decision
boxes

These are
output boxes

This is an
input box

A B C

▲	Figure 4.1 Labelled	flowchart	from	Chapter	3

It is possible that this flowchart might have continued on to another page. The
connector symbols have been added to the ends of the flow lines to show how
they would be positioned, if this were the case. Connector symbols A, B and
C would be drawn at the top of the next page with the appropriate flow lines
flowing down to the next symbol(s) if the flowchart continued.

To illustrate how to draw a flowchart, let us consider the earlier algorithms:

PROCEDURE triangle(width, height)

 area ← width*height*0.5

 PRINT area

ENDPROCEDURE

Triangle (width, height)

area ← width*height*0.5

PRINT area

Return

This becomes:

005603_04_CAIE_AS_Level_IT_BP_098-119.indd Page 115 23/11/23 7:22 AM F-0120 005603_04_CAIE_AS_Level_IT_BP_098-119.indd Page 115 23/11/23 7:22 AM F-0120 /147/HO02989/work/indd/147/HO02989/work/indd

SAMPLE PROOFS

116

4
A

lg
o

r
it

h
m

s
A

n
d

 f
lo

w
c

h
A

r
ts

4

INPUT width, height // type in the height and width of the
triangle

CALL triangle (width, height) // this would print out the area

INPUT number // type in the number of walls

count ← 0

WHILE count <number

 INPUT length, height

 count ← count + 1

 CALL rectangle (length, height)

ENDWHILE

This becomes:

Start

INPUT
width,
height

CALL triangle
(width, height)

Stop

Count < number ?

INPUT
length,
height

Yes

No

INPUT
number

Count ← 0

BA

Rectangle (length, width)

area ← length*width

PRINT area

Return

PROCEDURE rectangle(length, width)

 area ← length*width

 PRINT area

ENDPROCEDURE

This becomes:

005603_04_CAIE_AS_Level_IT_BP_098-119.indd Page 116 23/11/23 7:22 AM F-0120 005603_04_CAIE_AS_Level_IT_BP_098-119.indd Page 116 23/11/23 7:22 AM F-0120 /147/HO02989/work/indd/147/HO02989/work/indd

SAMPLE PROOFS

117

4.2 Flow
charts

4
CALL rectangle
(length, height)

Count ←
count + 1

BA

Notice the use of connector symbols because the flowchart goes over two pages.

As well as being able to increase the value of a counter, it is possible to add up a
set of numbers in the same way, using:

total ← total + number

but you need to initialise the total as you would initialise a count. The flowchart
to add up five numbers would look like this.

Start

Stop

Count < 5 ?

INPUT
number

Yes

No

Count ← 0
Total ← 0

PRINT total

Count ← count + 1
Total ← total + number

Common errors people make when drawing flowcharts and writing
algorithms are:

» failing to initialise a count (leaving out count ← 0)
» failing to initialise a running total (leaving out total ← 0)
» getting the greater than (>) confused with the less than (<) symbol
» In flowcharts, having the yes and no the wrong way around.

Activity 4b
1 Look back at the section on greenhouses in Chapter 3. Refine the algorithms provided for temperature,

moisture and light control to make them more efficient. Consider what should happen if the device is
already switched off or switched on. Include extra statements to replace where the original algorithm has
phrases like ‘or leave on’ and ‘or leave off’.

005603_04_CAIE_AS_Level_IT_BP_098-119.indd Page 117 23/11/23 7:22 AM F-0120 005603_04_CAIE_AS_Level_IT_BP_098-119.indd Page 117 23/11/23 7:22 AM F-0120 /147/HO02989/work/indd/147/HO02989/work/indd

SAMPLE PROOFS

118

4
A

lg
o

r
it

h
m

s
A

n
d

 f
lo

w
c

h
A

r
ts

4
The sequence of statements needed for this will be similar to the following:

WHILE system switched on

INPUT value

IF value < pre-set

 THEN

 IF device off

THEN

send signal to device to switch on

 ENDIF

 ELSE

 IF device on

THEN

send signal to device to switch off

 ENDIF

 ENDIF

ENDWHILE

You will need to change the word ‘device’ to the name of the device being used. You will need to change
‘value’ to the physical variable being measured. Draw program flowcharts for each algorithm so that each
is a subroutine with an appropriate name. You can assume the system is switched on.

2 Draw a simple program flowchart which would check if the system was on and would then call the
three subroutines.

3 Here is a program flowchart to output the sum of eight numbers. Identify the errors in it and suggest
improvements (the yes and no flow lines are positioned correctly).

Start

Stop

Count > 8 ?

INPUT
number

Yes

No

Count ← 0

Count ← count + 1
Sum ← sum + number

005603_04_CAIE_AS_Level_IT_BP_098-119.indd Page 118 23/11/23 7:22 AM F-0120 005603_04_CAIE_AS_Level_IT_BP_098-119.indd Page 118 23/11/23 7:22 AM F-0120 /147/HO02989/work/indd/147/HO02989/work/indd

SAMPLE PROOFS

119

4.2 Flow
charts

4
Practice questions

1 Write an algorithm using WHILE…ENDWHILE conditions, which would input
10 exam marks and if the mark was greater than 40 the output would be
‘You have passed’. If it was not, then the output would be ‘You have not
reached the pass mark’. [6]

2 Write an algorithm using a REPEAT…UNTIL loop which would input
five numbers and would output the largest number. [4]

3 Draw a flowchart which will allow the average of six numbers to
be calculated. [6]

4 A student wants to output the 10 multiplication (times) table up to a certain
number, which will be input at the start of the algorithm. The student wishes
to make sure that an invalid number is not input.
Identify the errors in this algorithm and suggest improvements. [5]

count ← 0

WHILE count = 0

INPUT number

IF number < 1

 THEN

PRINT "number is invalid"

ENDWHILE

WHILE count < number

 PRINT count, "x 10 = ", count*10

ENDWHILE

5 This flowchart inputs an examination
mark and then outputs an appropriate
message. If the mark is 80 or more, the
message is distinction; if it is 60 or
more, it is a merit; if it is 40 or more,
it is a pass; otherwise, it is a fail.
Identify the errors in this flowchart and
suggest how it might be edited
to produce the required output. [2]

Start

Stop

Mark < = 80 ?

Mark < = 60 ?

Yes

No

Yes

No

Yes

No
Mark < = 40 ?

INPUT
mark

PRINT
"Pass"

PRINT
"Fail"

PRINT
"Merit"

PRINT
"Distinction"

005603_04_CAIE_AS_Level_IT_BP_098-119.indd Page 119 23/11/23 7:22 AM F-0120 005603_04_CAIE_AS_Level_IT_BP_098-119.indd Page 119 23/11/23 7:22 AM F-0120 /147/HO02989/work/indd/147/HO02989/work/indd

SAMPLE PROOFS

This title is also available as an
eBook with learning support.
Visit hoddereducation.com/boost
to find out more.

I S BN 978-1-0360-0560-3

9 7 8 1 0 3 6 0 0 5 6 0 3

Develop theoretical and practical IT skills with this
comprehensive Student’s Book written by experienced
authors and examiners. It is part of a two-volume set
and fully covers Topics 1–11 which form the AS Level
content of the updated Cambridge International AS
& A Level Information Technology syllabus (9626) for
examination from 2025.
» Improve understanding of concepts and

terminology with clear explanations, photographs
and diagrams, plus a glossary of key terms.

» Develop theoretical and practical skills with a range
of exercises, practice questions, step-by-step
instructions and example answers to ensure that
skills are developed alongside knowledge.

» Follow a structured route through the course
with in-depth coverage of the AS Level content.

» Answers to the practice questions and activities and
all source files needed can be downloaded from
www.hoddereducation.com/cambridgeextras.

B
row

n
S

argent
Inform

ation Technology Second Edition
Cam

bridge International
A

S Level

Also available:

Cambridge International
A Level Information
Technology

This resource is endorsed for the Cambridge Pathway

✓ Supports the AS Level content of the Cambridge
International AS & A Level Information Technology
syllabus 9626 for examination from 2025

✓ Has passed Cambridge International Education’s
detailed and independent quality-assurance process

✓ Developed by subject experts

✓ Accessible and appropriate for Cambridge
schools worldwide

The Cambridge Pathway offers five stages of
education from age 3 to 19, with curriculum,
resources and assessment.

Registered Cambridge International Schools
benefit from high-quality programmes,
qualifications, assessments and a wide
range of support so that teachers can
effectively deliver in the classroom. Visit
www.cambridgeinternational.org to find
out more.

For over 30 years we have
been trusted by Cambridge
schools around the world to
provide quality support for
teaching and learning.
For this reason we are an Endorsement
Partner of Cambridge International
Education and publish endorsed materials
for their syllabuses.

30
YEARS

W

orking for over

C
am

bridge International E

duc
at

io
n

WITH

