

More resources for Higher Computing Science
from Scotland’s No.1 educational publisher

Find out more and order online at:
www.hoddergibson.co.uk/higher-computing-science

Essential SQA Exam Practice
Practice makes permanent. Feel confident and prepared for the exam with
this two-in-one book.

 Practice questions for every topic

 Two practice papers that mirror the real SQA exams

 Advice for writing successful answers and avoiding common mistakes

ISBN: 9781510471764

How to Pass
Achieve your best grade with Scotland’s most popular revision guides.

 Comprehensive notes covering all the course content

 In-depth guidance on how to succeed in the exam and assignment

 Exam-style questions to test understanding of each topic

ISBN: 9781510452435

How to code in Python
Become fluent in Python with this practical guide to the theory and logic
behind coding.

 Hundreds of coding examples, puzzles and problems

 Easy-to-follow explanations of concepts and terminology

 Solutions to the coding problems available online

ISBN: 9781510461826

Copyright: Sample material

http://www.hoddergibson.co.uk/higher-computing-science

Jane Paterson &
John Walsh

HIGHER

COMPUTING
SCIENCE

Higher_Title_Pages.indd 14 04/12/2019 14:309781510483811.indb 1 19/01/21 10:12 AM

Copyright: Sample material

Publisher’s note: Course assessment specifications for national courses may be updated from time to time. We make
every effort to update books as soon as possible when this happens, but – especially if you’re using an old copy of this
book – it’s always worth checking with your teacher or lecturer whether there have been any alterations since this book
was printed. Alternatively, check the SQA website (www.sqa.org.uk) for current course assessment specifications. We also
make every effort to ensure accuracy of content, but if you discover any mistakes, please let us know as soon as possible.

The Publishers would like to thank the following for permission to reproduce copyright material.

Photo credits

Images reproduced by permission of: p.43 © Stefan Szeider, used under a CC-BY-SA 4.0 licence; p.265 Newscast/Getty
Images; p.295 © Carlos Jones, used under a CC BY 4.0 licence; p.302 t SamJonah/Alamy Stock Photo, tr Iconic Cornwall/
Alamy Stock Photo, b PhotoEdit/Alamy Stock Photo; p.303 bl Jeffrey Blackler/Alamy Stock Photo, br dpa picture alliance/
Alamy Stock Photo; p.305 Dawson Images/Alamy Stock Photo; p.307 Finbarr Webster/Alamy Stock Photo.

Dilbert cartoons on pp. 3, 7, 78, 255, 323 used by permission of ANDREWS MCMEEL SYNDICATION. All rights
reserved.

Acknowledgements

To Craig and Laura.

To Helen, Peter John, Mary, Sarah, Siobhan, Cecilia, Orla, Poppy, Michelle and Erin.

Every effort has been made to trace-all copyright holders, but if any have been inadvertently overlooked, the Publishers
will be pleased to make the necessary arrangements at the first opportunity.

Although every effort has been made to ensure that website addresses are correct at time of going to press, Hodder
Education cannot be held responsible for the content of any website mentioned in this book. It is sometimes possible to
find a relocated web page by typing in the address of the home page for a website in the URL window of your browser.

Hachette UK’s policy is to use papers that are natural, renewable and recyclable products and made from wood grown in
well-managed forests and other controlled sources. The logging and manufacturing processes are expected to conform to
the environmental regulations of the country of origin.

Orders: please contact Hachette UK Distribution, Hely Hutchinson Centre, Milton Road, Didcot, Oxfordshire, OX11
7HH. Telephone: +44 (0)1235 827827. Email education@hachette.co.uk
Lines are open from 9 a.m. to 5 p.m., Monday to Friday. You can also order through our website:
www.hoddereducation.co.uk.

ISBN: 978 1 5104 8381 1

© Jane Paterson and John Walsh 2021

First published in 2021 by

Hodder Gibson, an imprint of Hodder Education
An Hachette UK Company
211 St Vincent Street
Glasgow, G2 5QY

www.hoddereducation.co.uk

Impression number	 5 4 3 2 1

Year	 2025 2024 2023 2022 2021

All rights reserved. Apart from any use permitted under UK copyright law, no part of this publication may be reproduced
or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or held
within any information storage and retrieval system, without permission in writing from the publisher or under licence
from the Copyright Licensing Agency Limited. Further details of such licences (for reprographic reproduction) may be
obtained from the Copyright Licensing Agency Limited, www.cla.co.uk

Cover photo ©phonlamaiphoto - stock.adobe.com

Illustrations by Integra Software Services Pvt. Ltd., Pondicherry, India

Typeset by Integra Software Services Pvt. Ltd., Pondicherry, India

Printed in Italy

A catalogue record for this title is available from the British Library.

We are an approved supplier on the
Scotland Excel framework.

Schools can find us on their
procurement system as: Hodder &
Stoughton Limited t/a Hodder Gibson.

9781510483811.indb 2 19/01/21 10:12 AM

Copyright: Sample material

http://www.fsc.org
http://www.sqa.org.uk
mailto:education@hachette.co.uk
http://www.hoddereducation.co.uk
http://www.hoddereducation.co.uk
http://www.cla.co.uk
http://stock.adobe.com

Contents
1	 Software design and development

Chapter 1	 Development methodologies� 1

Chapter 2	 Analysis� 6

Chapter 3	 Design� 9

Chapter 4	 �Implementation (data types and 	
structures)� 19

Chapter 5	 �Implementation (computational 	
constructs)� 27

Chapter 6	 �Implementation (algorithm 	
specification)� 43

Chapter 7	 Testing� 76

Chapter 8	 Evaluation� 87

2	 Database design and development

Chapter 9	 Database analysis� 94

Chapter 10	 Database design� 99

Chapter 11	 Database implementation� 125

Chapter 12	 Database testing� 163

Chapter 13	 Evaluation� 180

3	 Web design and development

Chapter 14	 Analysis� 191

Chapter 15	 Design� 195

Chapter 16	 Implementation (HTML)� 207

Chapter 17	 Implementation (CSS)� 217

Chapter 18	 Implementation (JavaScript)� 240

Chapter 19	 Testing� 254

Chapter 20	 Evaluation� 272

9781510483811.indb 3 19/01/21 10:12 AM

Copyright: Sample material

4	 Computer systems

Chapter 21	 Data representation� 277

Chapter 22	 Computer structure� 291

Chapter 23	 Environmental impact� 301

Chapter 24	 Security risks and precautions� 311

Glossary� 329

Answers available online at https://www.hoddergibson.co.uk

9781510483811.indb 4 19/01/21 10:12 AM

Copyright: Sample material

https://www.hoddergibson.co.uk

1

Chapter 1 Development
methodologies

Development methodologies
When creating new programs or applications (apps), software developers
follow a development methodology to design the software from start to
finish.

The first of these is the iterative development process.

The iterative development process
The iterative development process is better known as the Waterfall
development methodology, Waterfall life-cycle or Waterfall model and
follows a traditional, linear approach which consists of seven stages as
shown in Figure 1.1 on the next page. This sequence of steps, beginning
with analysis, is known as the software development process. It is iterative
in nature, meaning that steps can be revisited at any point in the life-cycle
of the development process (multiple times if necessary) if new information
becomes available and changes need to be made or errors discovered.

Looking at and understanding a problem is called ‘analysis’. In the Waterfall
model, the software developers need to know up front and in detail
exactly what the client wants the software to do. The design phase involves
working out a detailed series of steps to solve the problem. Once a solution
to a problem has been worked out, it needs to be turned into instructions
for the computer (a program). This is implementation. The program must
then be tested to make sure that it does not contain any mistakes which
would prevent it from working properly. A description of what each part of
the program does, i.e. documentation, should also be included. Evaluation
is the process which measures how well the solution fulfils the original
requirements. Maintenance involves changing the program, often quite
some time after it has been written.

Unit 1	 �Software design and
development

This chapter looks at and compares two different software development
methodologies.

The following topics are covered:

●	 Describe and compare the development methodologies:
•	 iterative development process.
•	 agile methodologies.

9781510483811.indb 1 19/01/21 10:12 AM

Copyright: Sample material

H
IG

H
E

R
 C

O
M

P
U

TI
N

G
 S

C
IE

N
C

E

2

Analysis

Design

Implementation

Testing

Documentation

Evaluation

Figure 1.1 An iterative development process (the Waterfall
model)

Documentation is needed at each stage of the iterative
development process.

●	 Analysis: the documentation at this stage consists
of the software specification. This is important
because it is the basis of all of the remaining stages
of the software development process. It is usually a
legally binding document (see Chapter 2 for more
information).

●	 Design: the documentation consists of the
description of the program design in an appropriate
design notation and the design of the user interface.
This description is important because it is the
‘bridge’ between the software specification and the
code.

●	 Implementation: the documentation at this stage
is the program listing(s), complete with internal
commentary. This is important because it explains
the purpose of each part of the code, and therefore
eases the process of maintenance.

●	 Testing: the documentation at this stage includes the
test plan and the results of testing. This is important
because it demonstrates whether or not the program
does what it was designed to do.

●	 Documentation: this stage has the technical guide
and the user guide. These are important because
they explain how to install and operate the
software.

●	 Evaluation: the acceptance test report, the results of
evaluation against suitable criteria. This is important
because it means that the program has been written

to the satisfaction of the client and therefore the
software company can be paid for their work.

●	 Maintenance: documentation at this stage is a log
of changes made to the program code, together
with the date and the new version number of
the program. This is important because it will
be updated constantly throughout the life of the
software in order to inform programmers about
earlier changes that have been made. Maintenance is
beyond the scope of Higher Computing Science but
is included here for completeness.

Agile methodologies
Agile methodologies belong to a wider category of rapid
application development methodologies. The process
of designing a program using Agile development is to
produce working software quickly so that the client
can test it and then give feedback, at which point it
can be altered and refined as required. It works on the
principal of delivering the software in small increments
instead of all at once.

Initiate
project

Define
requirements

Start

Integrate
and
test

Integrate
and
test

Integrate
and
test

Continuous visibility

Clients

Developers Users

 development
Agile

D
ev

el
op

m

en
t cy

cles

(a
dd

 fu

nc
tio

nality)

Release to
market

Review
Feedback

Next

iteration Adjustandtrack
Record and

incorporate ch
an

ge
s

?
No

YESAPROVE

Figure 1.2 Agile methodology

Each project is broken down into what the client needs,
otherwise known as ‘user stories’. Each of these user
stories is part of the overall Agile plan and encourages
the software developers to talk to their clients about
what they would like to see in their software. The
plan should include an idea of how long each of these
stories will take to develop. These are prioritised in
conjunction with the client (so that the important
requirements are delivered first) and included in the
plan for the development of the software.

Teams will normally work in short ‘sprints’ to produce
working prototypes which can be tested by the client.
A sprint is a short, fixed time period (typically two
weeks) during which planning, analysis, design,

9781510483811_CH01.indd 2 19/01/21 1:37 PM

Copyright: Sample material

U
nit 1: Softw

are design and developm
ent

3

implementation and testing are completed. At the end
of the sprint, the prototype is ready to be tested by the
client (acceptance testing). The client will then be able

to give regular feedback and alterations can be made
when required. The plan itself can be updated when
and where required.

Figure 1.3 User stories

Often by the time the project comes to an end, all the
client’s requirements may not have been built, and
there will be one of two outcomes. Either the client
may opt for software which has fewer features or the
software development team may ask for more money to
complete the software as originally required.

The development of software using Agile methodology
is a constant process of analysis, design, implementation
and testing. This means it is iterative as each of the
stages will be visited multiple times as the software is
refined. When what can be delivered differs from was
originally requested, Agile allows plans to be changed.
This is known as ‘adaptive planning’.

Agile methodology vs. Waterfall model
The Waterfall model is an older approach to developing
software and is based on the idea that each of the phases of
the development life-cycle are discrete parts which should
be completed in turn. It gives both client and developer a
clear path as to how each project should progress.

The main emphasis of Agile development is speed. Project
goals are determined quickly and all phases are iterated
continuously rather than individually, so that the software
is developed and adapted quickly as shown in Figure 1.4.

Analysis Design Code Test

Traditional

One-off activities

Agile

Continuous activities

A
nalysis

D
esign

C
ode

Test

Figure 1.4 Agile methodology vs. Waterfall model

Advantages of the Waterfall model

The Waterfall model is best suited to larger projects
and large teams of developers with a long lead time. As
the client is usually less involved during development,
they need to know exactly what they want at the start of
the process because it forms part of the legally binding
agreement. Due to its tendency to focus on quality of
software over speed of development, the software is
tested more fully and the software produced tends to
have less bugs. Projects that follow the Waterfall model
are generally finished on time and within the set budget.
Milestones set at the start of the project give both
developer and client an easy way to track its progress.

9781510483811.indb 3 19/01/21 10:12 AM

Copyright: Sample material

H
IG

H
E

R
 C

O
M

P
U

TI
N

G
 S

C
IE

N
C

E

4

Disadvantages of the Waterfall model

The linear setup of the Waterfall model is its main
failing as there can be no deviation from the plan
once it has commenced. Because requirements are
only sought at the start of the project, clients are not
continuously involved. So, if a client does not have
a clear idea about what the software should do and
their needs change over the course of the project,
there is a strong possibility that the software delivered
will not then meet their requirements.

Once the software has reached the testing phase, changes
can be difficult to make. If changes then do need to be
made, this can take more time and will cost more money.

To try to mitigate this, client feedback can be built in to
the phases of the life-cycle so that changes can be made.

Advantages of Agile methodology

Agile methodology is best suited to smaller projects,
like creating (or frequently updating) apps, with
smaller teams of developers. The client is involved
at all stages of the development of the software and
feedback is sought constantly. This means that the
software developed is more likely to be exactly what
the client wants even if they were not completely
certain of the requirements at the start of the project.
It also allows the client an element of flexibility in
that, if they change their minds or would like other
features included, adding them does not present too

much of a challenge to the developers. Because of
the constant iterative nature of Agile methodology,
improvements to the software can be incorporated
after each cycle.

The main focus of Agile development is to deliver
software at speed, which makes it perfect for projects
which are required quickly.

Disadvantages of Agile methodology

At the start of the Agile process, there tends not to
be a legally binding agreement due to the changing
nature of client’s requirements. It is also not suited
to large projects and large teams. The client needs to
be prepared to spend a large amount of time being
involved with the project as their involvement is
required throughout.

Strict sprint deadlines can be a huge disadvantage and
can result in a project not being completed. Either the
customer pays more for the project to be completed, or
they simply have to accept what has been developed,
however much reduced in scope. The frequent updates
can be difficult to track and need strict control over the
version numbers given to each iteration or update.

CHECK YOUR LEARNING

Now answer questions 1–10 below

QUESTIONS
1	 State what is meant by the term ‘iteration’.
2	 State why a development stage might need to be

revisited.
3	 Describe each stage in the software development

life-cycle.
a)	 Analysis
b)	 Design
c)	 Implementation
d)	 Testing
e)	 Documentation
f)	 Evaluation

4	 State the category of methodologies to which Agile
belongs.

5	 Describe what is meant by the term ‘user story’.
6	 How does the developer prioritise the order in

which to develop the user stories?
7	 Describe how working prototypes are produced by

the developers.
8	 a)	 �Describe a situation where a client’s

requirements may not have been met.

b)	 What two options may the client have if the
requirements have not been met?

  9	 State what is meant by ‘adaptive planning’.
10	 Complete the table of iterative (Waterfall method)

vs. Agile methodology. The first line has been
completed for you.

Iterative Agile

Suited to large software
projects

Suited to small software
projects

9781510483811.indb 4 19/01/21 10:12 AM

Copyright: Sample material

U
nit 1: Softw

are design and developm
ent

5

KEY POINTS
●	Two types of development methodologies are

iterative (Waterfall) and Agile.
●	The Waterfall model follows a traditional, linear

approach.
●	The iterative methodology means that steps can

be revisited at any point in the life-cycle.
●	Analysis is looking at and understanding a problem.
●	Design is working out a series of steps to solve a

problem.
●	 Implementation is turning a design into a

computer program.
●	Testing makes sure that a computer program does

not contain any mistakes.
●	Documentation is a description of what each part

of the program does.
●	Evaluation ensures that the software fulfils the

original software specification.
●	Agile methodologies belong to a wider category of

rapid application development methodologies.
●	Agile works on the principal of delivering the

software in small increments instead of all at once.
●	Each project is broken down into user stories.
●	User stories are prioritised by the client and

developer, so that the important requirements are
delivered first.

●	Teams work in short sprints to produce working
prototypes which are tested by the client.

●	A sprint is a short, fixed time period typically
lasting two weeks.

●	The development of software using Agile
methodology is a constant process of analysis,
design, implementation and testing.

●	Adaptive planning allows the requirements to be
changed on request.

●	 Iterative is best suited to large projects which
require a large team of developers.

●	Analysis in the iterative process produces a legally
binding contract.

●	Software produced using an iterative method is
usually high quality and bug free.

●	 Iterative projects tend to finish on time and within
budget.

●	The client has limited involvement during the
entire iterative process.

●	Changes can become more difficult and expensive
as the project progresses in iterative projects.

●	Agile is best suited to small software projects and
requires a small team of developers.

●	There is no legally binding contract in the Agile
process.

●	The client is involved throughout the Agile
process.

●	Changes can be easily made as the Agile process
progresses.

●	Agile projects can run over time, are not always
completed and can cost more money to finish.

●	Version control is important to keep track of
updates.

9781510483811.indb 5 19/01/21 10:12 AM

Copyright: Sample material

6

Chapter 2 Analysis
This chapter considers how to analyse a problem to help create the software specification.

The following topics are covered:

●	 Identify the:
•	 purpose
•	 scope
•	 boundaries and functional requirements of a problem that relates to the design and implementation at this

level, in terms of:
•	 inputs
•	 processes
•	 outputs.

Analysis
Analysis first of all involves reading and understanding
a problem. If you are set a problem in class, you should
read the problem several times and think about it
carefully. It often helps to write out the problem in your
own words. Sometimes the problem contains parts
which are not very clear, and you will have to make
some assumptions about what you think is meant by
these parts of the problem.

Eventually you will get to the stage where you will
be able to create a precise software specification. The
software specification should contain what the software
is supposed to do but does not indicate how this is to
be achieved.

It is very important that the software specification is
correct, since mistakes at this stage can be very costly to
put right later on in the software development process.
The software specification is a clear unambiguous
statement of the problem and forms the basis of a legal
contract.

Here is an example of what could happen if a software
specification is not correct:

A farmer, as can be seen in commissioned a
software company to write a database program to
store details of his herd of cattle. The maximum
size was to be 1000 records. Cow number 1000
had a calf. The farmer entered the new calf’s details
into the program and the program crashed. Who
was to blame? Was it the software company for not
anticipating that the herd of cattle would increase
in size or was it the farmer’s fault for agreeing to
the maximum size of 1000 records? In any case,
if the program matched the software specification

correctly, then the software company would still be
entitled to be paid for their work.

Figure 2.1 The software specification forms the basis of a
legal contract between the client and the software company

The analysis phase can be broken
down into a series of discrete
sections.

Purpose
The purpose of the problem is
stating what the software should
do once completed. The detail for

this is written in the scope, boundaries and functional
requirements.

Scope
The scope should state clearly and concisely what the
software must do, i.e. specific project goals. It should
also state the start and end dates, cost, deliverables
(including but not limited to, the design of the
software, the software itself, results of testing and the
test plan), milestones and deadlines. A milestone is
a completed step in a software development project.
It means that developers know what work is due and
by which date.

Figure 2.2 Numbers

9781510483811.indb 6 19/01/21 10:12 AM

Copyright: Sample material

U
nit 1: Softw

are design and developm
ent

7

If the project is poorly managed and changes are constantly made, then
scope creep can occur. This usually happens if the scope is not properly
defined or documented. It is also known as ‘requirement creep’, ‘function
creep’ or ‘kitchen sink syndrome’.

The scope should also define the boundaries of the software.

Figure 2.3 Scope creep

Boundaries
Boundaries help to clarify what the software should and should not do.
They should also state any assumptions that are being made about what the
client requires.

WORKED EXAMPLE
Consider the following simple problem outline:

Average problem: Write a program which calculates
and displays the average of a set of numbers.

This could hardly be described as a precise software
specification. If you, as a programmer, were given this
task you would need to ask some questions before you
could begin to design a solution.

Questions you may ask about the Average problem:

●	How many numbers are in the set?
●	What is the maximum value of a number?
●	Are numbers to be whole numbers (integers) or

numbers with a fractional part (real numbers)?
●	To how many significant figures should the

average value be displayed?
●	How are numbers to be obtained as input to the

program (i.e should the program ask the user
to enter each number every time the program
is run)?

●	Are any of the numbers entered to be stored after
the program is complete?

●	What output device(s) are to be used (i.e. display
on screen or hard copy to printer)?

If there is no one available to ask for clarification of
a problem, then you should examine the problem
carefully and write down some assumptions.

For the Average problem, these assumptions
might be:

●	The maximum amount of numbers is 10.
●	The minimum value of a number is 1.
●	The maximum value of a number is 100.
●	All the numbers are whole numbers, apart from

the average, which has to be displayed correct to
two decimal places.

Putting these assumptions together with the original
Average problem, would give a more precise
description of the scope and boundaries.

Functional requirements
The functional requirements describe how the software should function or
perform. They involve identifying the problem inputs, the process(es) and
the problem outputs. The best way to do this is to create a table with the
three headings: Input, Process and Output and use the information given in
the problem as shown in Table 2.1.

9781510483811.indb 7 19/01/21 10:12 AM

Copyright: Sample material

H
IG

H
E

R
 C

O
M

P
U

TI
N

G
 S

C
IE

N
C

E

8

Input Process Output

A maximum of 10 numbers (integers),
within a range of 0 to 100.

Calculate the average (sum the
numbers and divide the total by the
amount of numbers).

Display the average value (a real
number, correct to two decimal places).

Table 2.1 Example table for the Average problem

CHECK YOUR LEARNING

Now answer questions 1–3 below

QUESTIONS
1	 Why does the software specification have the

status of a legal contract?
2	 Give an example of what could happen if the

software specification was not correct.
3	 Analyse the following problem outlines and produce

a precise software specification by reporting on:
•	 the purpose of the software.
•	 scope and boundaries of the software.
•	 functional requirements of the software.

 	 You should ensure that you include any
assumptions that need to be made and identify the
problem inputs, process(es) and outputs as part of
the functional requirements.
a)	 Write a program which will ask the user for two

numbers and give their sum (+), product (*) and
quotient (/).

b)	 Write a program which will take in a word of up to
15 letters and display it on the screen backwards.

c)	 Write a program which will only allow the user
to enter words consisting of five letters and
display them on the screen.

d)	 Write a program which will calculate how fast a
cyclist is travelling if you input their time taken
to travel 100 metres.

e)	 Write a program which will accept a
temperature in degrees Celsius and output the
temperature in either degrees Fahrenheit or
degrees Kelvin as required by the user. (Kelvin
= Celsius + 273.15; deg F = 9/5 Celsius + 32)

f)	 Write a program which will capitalise the first
character of a word entered by the user (i.e.
john to John).

g)	 Write a program which will calculate the length
of one side of a right-angled triangle if the lengths
of the other two sides is input (Pythagoras).

h)	 Write a program which will change a student’s
percentage test mark into a letter grade (A–E).

i)	 Write a program which will calculate the area
of a triangle if you enter its base and height.
(area = 1/2 base × height)

j)	 Write a program which will take in a message
and display it on the centre of the screen.

KEY POINTS
●	Analysis involves reading and understanding a

problem.
●	The purpose of the problem is what the software

should do once completed.
●	The software specification should contain what the

software is supposed to do but does not indicate
how this is to be achieved.

●	The scope should state clearly and concisely what
the software must do.

●	Boundaries help to clarify what the software
should and should not do.

●	Boundaries should also state any assumptions that
are being made about what the client requires.

●	The functional requirements describe how the
software should function or perform.

●	The functional requirements should define inputs,
processes and outputs to the program.

●	 Inputs should clearly state what data must be
provided for the program to function.

●	Processes should determine what has to be done
with the data entered.

●	Outputs should show the results of the program
when it is run.

9781510483811.indb 8 19/01/21 10:12 AM

Copyright: Sample material

9

Chapter 3 Design

Simple data types and structures
When designing the solution to a problem, the data types and structures to
be used in the solution should be identified so that the software developer
knows the type of data each variable will store.

The data types stored by a program may be a number, a character, a string,
a date, an array, a sound sample, a video clip or indeed, any kind of data.
Some high-level languages, such as C++, allow programmers to specify their
own data types; these are called user-defined data types.

Some of the more important data types are listed below:

●	 Alphanumeric data: may include letters, digits and punctuation. It
includes both the character and string data types. Character data is
a single character represented by the character set code, e.g. ASCII
(American Standard Code for Information Interchange). String data is a
list of characters, e.g. a word in a sentence.

●	 Numeric data: may consist of real data or integer data. Real or float
data includes all numbers, both whole and fractional. Integer data is a
subset of real data which includes only whole numbers, either positive
or negative.

●	 Date data: is data in a form representing a valid date, e.g. 29/2/2020 is
valid date data, 30/2/2020 is not.

●	 Boolean or logical data: may only have two values, true or false.
Boolean data is used in a program’s control structures.

●	 Sample data: consists of digitally recorded sound data (e.g. MP3) and
video data (e.g. a video clip MPEG). These are complex data types
which contain enough data to allow a subprogram or application to
reproduce the original data.

One factor which may influence a programmer’s choice of software
development environment is the range of data types available. For example,
C++ has at least six different numeric data types, whereas some versions of
the BASIC language may only have the two numeric data types described
above.

This chapter considers how to turn the software specification created at the analysis stage into a design for a
program.

The following topics are covered:

●	 Identify the data types and structures required for a problem that relates to the implementation at this level.
●	 Read and understand designs of solutions to problems at this level, using the following design techniques:

•	 pseudocode
•	 structure diagrams.

●	 Exemplify and implement efficient design solutions to a problem, using a recognised design technique,
showing:
•	 top-level design
•	 the data flow
•	 refinements.

●	 Describe, exemplify and implement user-interface design, in terms of input and output, using a wireframe.

9781510483811.indb 9 19/01/21 10:12 AM

Copyright: Sample material

H
IG

H
E

R
 C

O
M

P
U

TI
N

G
 S

C
IE

N
C

E

10

Data structures include arrays, records and arrays of
records. More detailed information on data structures
can be found in Chapter 4.

WORKED EXAMPLE 1
Take the Average problem we discussed in Chapter
2 and Table 2.1 from the Functional Requirements.
We would need to consider which data types and
structures would be suitable for storing the data in
this problem.

We know from the input part of the functional
requirements that 10 numbers are required. If we
assume that those 10 numbers are whole numbers,
then we could say that the data type for input is integer.

A running total would be required total the numbers
and since the input is an integer so too must be the
total.

Output for the program is a little easier as it would
always be a real (float) number unless the output is a
multiple of 10.

Data types and structures
number, total: integer

average: real (float)

Designing the solution 	
to a problem
Once you have a precise software specification, then
you can begin to design your solution to the problem.

In a normal problem-solving situation, you should
always ask these questions:

●	 Is writing a program the best way to solve this
problem?

●	 Can it be solved more easily another way?

Returning to the Average problem again, if the
average is to be found for only one set of numbers,
i.e. as a one-off, then it would probably be much
more efficient to use a calculator and work out the
average that way, rather than entering the numbers
into a computer. However, if you have to work out
many different averages for lots of sets of numbers,
then it would be worthwhile using a computer
software solution.

If you decide to use a computer to solve the problem,
then you should begin by looking at the highest level of
software you have available.

For instance, would it be possible to solve this problem
using a general-purpose application package such as
a spreadsheet or a database rather than by writing a
program in a high-level language?

How could you use a spreadsheet to solve the Average
Problem?

Answer: create a new spreadsheet document; enter the
set of numbers into a column or a row and enter the
formula =AVERAGE(cell range) into an unused cell.

However, in this unit on software design and
development, you are concerned with producing a
computer solution to a problem using some kind of
programming language. Your approach to problem
solving should therefore take account of this.

Program design is the process of planning the solution.
The design of the program is very important for its
success. Time spent at this stage is very worthwhile and
can reduce the chance of errors appearing later on in
the solution.

Consider the many home improvement, DIY and
gardening make-over programs which appear on
television. Their success appears magical as a team of
‘experts’ descends on a person’s home and completes
the conversion in two or three days. Despite how
casual it may appear, all these transformations are
planned out to the last detail. The ‘experts’ have all
visited the homes weeks, if not months, in advance,
and have gone away and drawn up detailed plans for
the conversion.

Figure 3.1 Garden plans and room plans

It is just the same with programming: the more time
you spend thinking about and planning the design of
the program, the less time you will spend wondering
why your program does not work as it should.

9781510483811.indb 10 19/01/21 10:12 AM

Copyright: Sample material

U
nit 1: Softw

are design and developm
ent

11

Modular design

NOTE
It is not within the scope of this textbook (nor Higher
Level Unit) to cover all the possible methods of
program analysis and design which may be used as
part of the software development process.

Modular design is a method of organising a large
computer program into self-contained parts called
modules, which can be developed simultaneously by
different programmers or programming teams. Modules
are specially constructed so that they can be designed,
coded and maintained independently of one another.
Some modules may be linked to other modules and
some may be separate programs. Top-down design and
bottom-up design are both forms of modular design.

Top-down design

Top-down design involves looking at the whole problem
(top) and breaking it down into smaller, easier to solve,
sub-problems. Each sub-problem may be further sub-
divided into smaller and simpler sub-problems (modules).
This process of breaking down sub-problems into yet
smaller steps is called stepwise refinement. Eventually the
stage is reached where each sub-problem can no longer be
broken down and the refinement process comes to a halt.

At this point each small
step can be translated
into a single line of
program code.

When stepwise
refinement is complete,
then you have created
an algorithm, which is a
sequence of instructions
that can be used to
solve a problem.

Bottom-up design

The bottom-up method of designing a solution to a
problem begins with the lowest levels of detail and
works upwards to the highest level of the idea. It seems
strange to think that it is sensible to work towards
something without really knowing what that something
is before you begin. However, using a bottom-up design
approach means writing modules or procedures first.
This approach is sometimes called ‘prototyping’, where
you construct a procedure separately before joining it
together with the rest of a program.

Design techniques
The way of representing the program design or
algorithm is called the design technique (or design
notation). The programmer has a choice of design
techniques. Common design techniques include
drawing a flow chart, a structure diagram or writing
pseudocode. Some design techniques use graphical
objects such as icons to represent the design of a
program. However, in Higher Computing Science, we
look only at pseudocode and structure diagrams.

Pseudocode
Pseudocode is the name given to the language used
to define problems and sub-problems before they are
changed into code in a high-level computer language.
Pseudocode uses ordinary English terms rather than
the special keywords used in high-level languages.
Pseudocode is therefore language independent.

Here is some pseudocode showing part of the design
of one possible solution to the Average problem. This
pseudocode shows the top-level design with stepwise
refinements.

Algorithm

1	initialise
2	take in numbers
3	calculate average value
4	display average value

Refine sub-problem 2:

2.1	loop REPEAT
2.2	  add one to counter
2.3	  ask user for a number
2.4	  take in a number
2.5	UNTIL counter equals amount required

Refine sub-problem 2.4:

2.4.1	loop REPEAT
2.4.2	  get number from user
2.4.3	� � IF number is outwith range THEN

display error message
2.4.4	UNTIL number is within range

Pseudocode is very useful when you are programming
in languages like LiveCode or Python, because it fits in
neatly with the structure of the code. The main steps
in the algorithm relate directly to (in fact, become) the
main program, the refinements of each sub-problem
become the code in the procedures. (See Chapter 6 for
more examples of pseudocode.)

Figure 3.2 Breaking down a 	
problem …

9781510483811.indb 11 19/01/21 10:12 AM

Copyright: Sample material

H
IG

H
E

R
 C

O
M

P
U

TI
N

G
 S

C
IE

N
C

E

12

Pseudocode is useful for representing the design of the types of problem
that you are likely to face in this unit.

In a more complex professional programming situation, or in a much larger
project, structure diagrams may be more appropriate.

Structure diagrams
Structure diagrams use linked boxes to represent the different sub-problems
within a program. The boxes in a structure diagram are organised to show
the level or hierarchy of each sub-problem within the solution. In general,
structure diagrams follow a left to right sequence.

Table 3.1 shows the function of each symbol in a structure diagram.

WORKED EXAMPLE 2

Implementation
Suppose that your chosen software development
environment is a high-level programming language
such as Python. Let’s look at how you might choose

to implement part of the solution to the Average
problem in Python.

Design (Pseudocode)				 	 Python (actual program code)

2.1	�loop WHILE not equal to amount
required

2.2	  add one to counter
2.3	 � ask user for a number between 1

and 100
2.4	 � take in a number between

1 and 100

     

def takeInNumbers():

  while counter != amount_required:

   counter= counter+1

   �print(‘Please enter a number
between 1 and 100’)

   number=checkInput(number)

Symbol Name Description

 

Process This represents an action to be taken, a function to run, or a
process to be carried out, e.g. a calculation.

 
or
 

Loop The loop symbol indicates that a process has to be repeated
either a fixed number of times or until a condition is met.

9781510483811.indb 12 19/01/21 10:12 AM

Copyright: Sample material

U
nit 1: Softw

are design and developm
ent

13

Symbol Name Description

Pre-defined process This symbol describes a process that contains a series of
steps. It is most commonly used to indicate a sub-process or
subroutine but could also indicate a pre-defined function like
the random number function.

Selection This symbol shows that there may be different outcomes
depending on user input or the result of an earlier process.

Table 3.1 Structure diagram symbols

Figure 3.3 shows one possible design for the Average problem from
Chapter 2.

Average
program

Initialise
Take in

numbers
Calculate
average

Display
average value

REPEAT UNTIL
counter=numbers

required

Add 1 to counter
Ask the user to
enter a number

Get a number
Add number to
running total

REPEAT UNTIL
number is within

range

Get a number
IF number is

outwith range

Yes

Display error
message

Figure 3.3 Structure diagram

Data flow
Giving some indication of the flow of data between modules of your
program is important. Some design techniques allow data flow to be shown
clearly. Pseudocode uses the terms in:, out: and in-out: to represent the
flow of data used in subprograms. For Higher, we will only use in: and out:.
Structure diagrams use up and down arrows to indicate data flow into and
out of subprograms.

9781510483811.indb 13 19/01/21 10:12 AM

Copyright: Sample material

SQA Higher Computing Science: Boost eBook

Boost eBooks are interactive, accessible and flexible. They use the latest
research and technology to provide the very best experience for students
and teachers.

●	 Personalise. Easily navigate the eBook with search, zoom and an image
gallery. Make it your own with notes, bookmarks and highlights.

●	 Revise. Select key facts and definitions in the text and save them as flash
cards for revision.

●	 Listen. Use text-to-speech to make the content more accessible to students
and to improve comprehension and pronunciation.

●	 Switch. Seamlessly move between the printed view for front-of-class
teaching and the interactive view for independent study.

To subscribe or register for a free trial, visit:
www.hoddergibson.co.uk/higher-computing-science

Copyright: Sample material

http://www.hoddergibson.co.uk/higher-computing-science

http://www.hoddergibson.co.uk
http://www.hoddergibson.co.uk/boost
mailto:education@bookpoint.co.uk

