
CCEA

GCSE

Biology

James Napier

Higher tier
Suitable for
GCSE Biology
and GCSE Science
Double Award
Answers online

HODDER EDUCATION LEARN MORE

WORKBOOK

Contents

Unit 1: Cells, living processes and biodiversity

Cells	3
Photosynthesis and plants	6
Nutrition and food tests	10
Enzymes and digestion	12
The respiratory system, breathing and respiration	15
The nervous system and hormones	
Ecological relationships and energy flow	24
Unit 2: Body systems, genetics, microorganisms and health	
Osmosis and plant transport	
The circulatory system	35
Reproduction, fertility and contraception	38
Genome, chromosomes, DNA and genetics	42
Variation and natural selection	47
Health, disease, defence mechanisms and treatments	50

- This workbook will help prepare you for the CCEA GCSE Biology and CCEA GCSE Double Award (Biology) exams.
- Your exams will include a range of short, structured questions and longer questions requiring continuous prose, including 6-mark questions testing both biological knowledge and your quality of written communication. You need to be able to answer questions requiring biological knowledge and understanding, as well as being able to analyse and evaluate data set in familiar and unfamiliar scenarios. This workbook will help you develop the skills to answer all these question types.

All questions are suitable for Higher Tier students. Questions in the paler tints are for Science Double Award and GCSE Biology. Questions in the darker tints are for GCSE Biology only.

- For each topic, there are:
 - stimulus materials, including key terms and concepts
 - short and longer exam-style questions
 - space for you to write your answers

Answering the questions will help you develop your skills and meet the assessment objectives AO1 (knowledge and understanding), AO2 (application) and AO3 (analysis and evaluation).

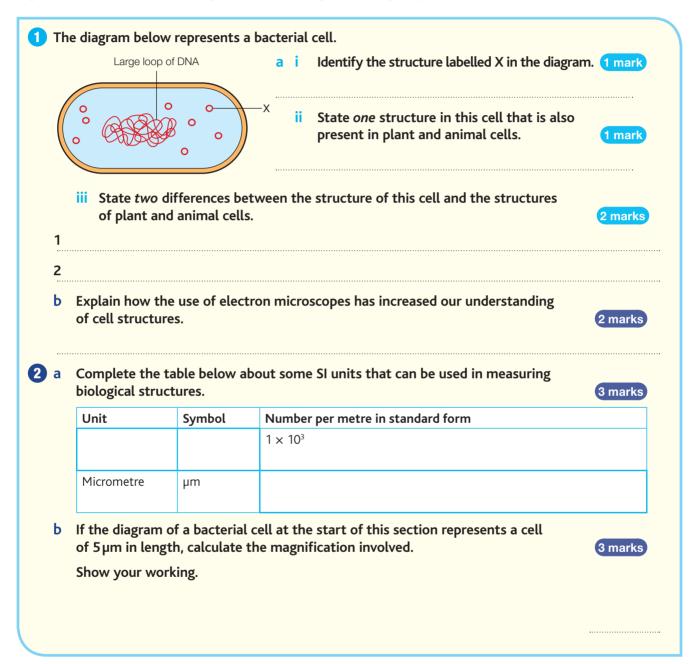
You still need to read your textbook and refer to your revision guides and lesson notes.

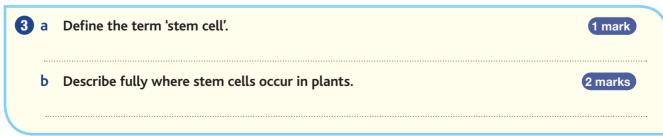
Timings are given for the exam-style questions to make your practice as realistic as possible.

Marks available are indicated for all questions so that you can gauge the level of detail required in your answers.

Answers are available at www.hoddereducation.co.uk/workbookanswers

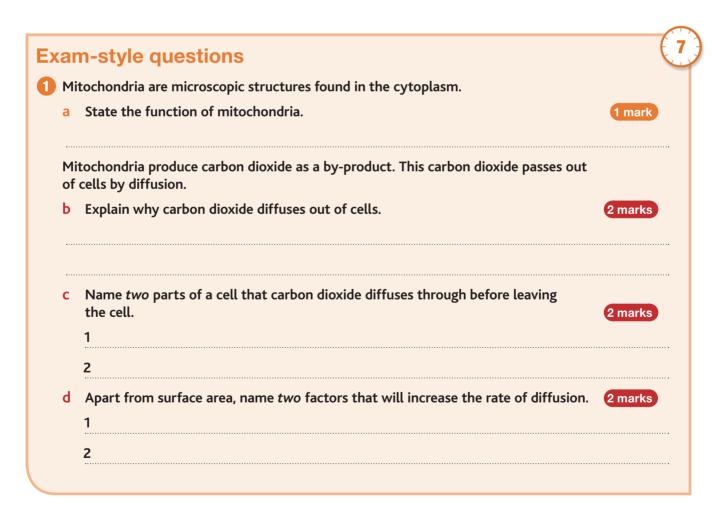
4)




Cells

Cells and microscopy

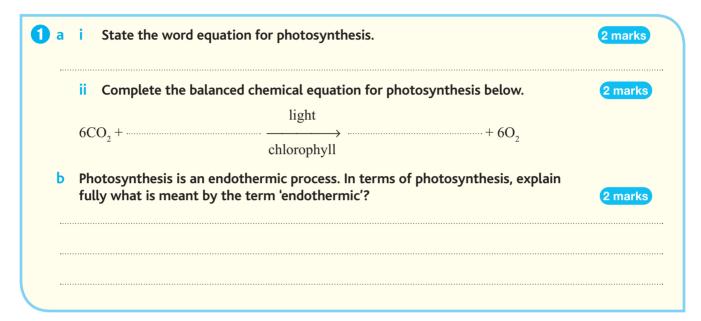
The cell is the basic unit in living organisms. Plants, animals and bacteria are formed of different types of cell. Stem cells are special cells that can divide to form other types of cell as an organism grows. In multicellular organisms, the cells can be arranged into tissues, organs and organ systems.



Stem cells, cell specialisation and diffusion

1 1 These questions are for GCSE Biology students only

Level of organisation	Description					
	Group of similar cells with same general structure and function					
Organ system						
	Structure made of several types of tissue that carries out a particular functi					
area to volume ra						
area to volume ra	etween increasing size in living organisms and the need to					
area to volume ra	etween increasing size in living organisms and the need to					
area to volume ra	etween increasing size in living organisms and the need to					
area to volume ra	etween increasing size in living organisms and the need to					



2 a	Many patients who have leukaemia are given chemotherapy and/or radiotherapy a treatment. Once this treatment is complete they are often given a transfusion of some stem cells often come from a close relative, such as a brother or sister, as the cells will be a good match.	tem cells.
	i Explain why a transfusion of stem cells is often necessary in patients with leukaemia.	2 marks
	ii Name the type of cells these stem cells will produce.	1 mark
	iii Suggest from which part of the body the stems cells are harvested in the donor individual.	1 mark
	iv Suggest why it is important that the stem cells from the donor are a 'good match' to the tissue in the patient.	1 mark
b	Explain how embryonic stem cells differ from the type of stem cells used to treat leukaemia.	2 marks
 C	A photograph of a stem cell in a textbook is 45 mm. It has been magnified 600 times. Calculate the actual length of the cell in μm.	3 marks
	Show your working.	
		μm

Photosynthesis and plants

Photosynthesis

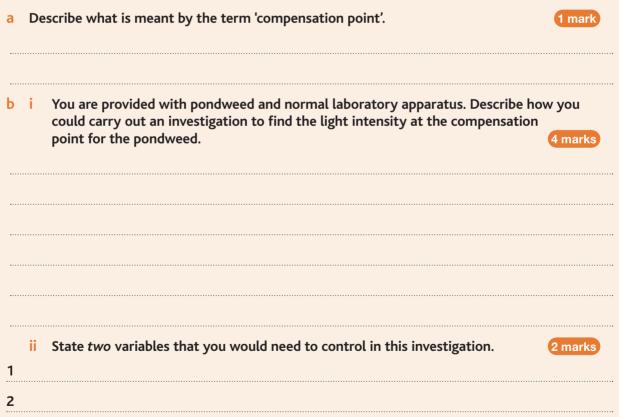
Photosynthesis is a process in plants in which sugars and starches are built up from inorganic raw materials. The process requires light energy that is trapped by chlorophyll. Most photosynthesis takes place in the leaves of plants. Photosynthesis investigations often involve testing a leaf for starch to show that photosynthesis will only take place in the presence of chlorophyll, carbon dioxide and light.

Investigating photosynthesis

rch test can be used to show that photosynthesis has taken place in a plant.	
Explain fully why plants are destarched in photosynthesis investigations.	2 marks
Complete the sentences below.	
When carrying out a starch test, leaves are boiled into remove	ve
the chlorophyll. This is done so that colour changes can be more easily seen when	
is added to the leaf.	2 marks
In what way are variegated leaves different from typical plant leaves?	1 mark
Suggest why variegated leaves are not common in nature.	1 mark
	Complete the sentences below. When carrying out a starch test, leaves are boiled in to remove the chlorophyll. This is done so that colour changes can be more easily seen when is added to the leaf.

1 1 These questions are for Science Double Award and GCSE Biology students

Gas exchange and limiting factors


a	i	Name the process in and darkness.	volvin	g gas e	xchan	ge that	takes	place	in both	n light		11	nark
	ii Photosynthesis also involves gas exchange. Name the gas taken into plant leaves during the process of photosynthesis.										1	1 mark	
••••	iii Name the structures in plant leaves in which photosynthesis takes place. Circle the correct answer.												
		mitochondria		chl	loropla	asts		nucle	us		chlore	phyll	
Ь	Th	e table below shows h	now lig	ght inte	ensity	affects	the ra	ite of p	hotos	ynthes	is.		
		ght intensity bitrary units	0	1	2	3	4	5	6	7	8	9	10
		ate of photosynthesis bitrary units	0	1.5	3.1	4.5	6.1	7.6	7.6	7.5	7.6	7.7	7.6
	i At which light intensity did light cease to become a limiting factor?												
••••	ii At a light intensity of 9 arbitrary units, state <i>two</i> environmental factors that could be limiting the rate of photosynthesis.												
1													

Leaf structure

5 a	i	Describe the function of guard cells and stomata.	2 marks
1	ii	In most plants, the stomata are mainly found on the lower surface of plant leaves. Suggest two reasons for this.	2 marks
2			
b	De	escribe fully the function of the intercellular spaces in a leaf.	2 marks

1 1 These questions are for GCSE Biology students only

ar	m-style questions				
a	Name a chemical used to abso	orb carbon	dioxide.		1 mark
b	Describe how you could carry necessary for photosynthesis		_	rbon dioxide is	5 marks
	e table below shows how hydro	ogencarboi	nate indicator changes colo	our in different	carbon
dic		ogencarboi Low	nate indicator changes colo	our in different	carbon

1 1 These questions are for Science Double Award and GCSE Biology students

Waxy cuticle	Section through leaf	Rate of photosynthesis High ← Low	The letters A–D refer to the differe layers in a typical leaf.	ent
	B C	High←Low	a i Give two properties of the waxy cuticle in leaves.12	2 marks
	ate <i>three</i> ways in wlotosynthesis.	hich the palisade mes	ophyll cells are adapted for	3 marks
2				
3				
III Ide	ntiry the layers lab	elled A, B and C in the	e diagram.	2 marks
	pe and explain the c	hanges in rate of phot	tosynthesis across layers A, B and C.	4 marks
b Describ				