

Organic chemistry

Reactions and mechanisms

William Stockburn gives an overview of reactions and mechanisms

Elimination (alcohol dehydration)

The first step is the protonation of the alcohol by the acid catalyst (H-A).

The second step is the leaving of the protonated alcohol group and the removal of a hydrogen atom, regenerating the acid catalyst:

Electrophilic addition

Addition always takes place across the double bond. $X-X = F_2$, Cl_2 , Br_2 or I_2

For this reaction X-X can also be H-F, H-Cl, H-Br or H-I:

Major versus minor products

Unsymmetrical alkenes undergoing electrophilic addition produce two products – one major and one minor. The major/minor products are explained by the intermediate carbocation formed. The most stable carbocation intermediate leads to the major product.

The order of stability of carbocation intermediates is $3^{\circ} > 2^{\circ} > 1^{\circ}$:

Minor product

Hydration of ethene

This is an electrophilic addition mechanism with a substitution step in the middle.

H₂SO₄ is used as the acid catalyst (H-A):

Nucleophilic reactions

Nucleophilic addition

Nu HO Nu Nu OH

R = alkvl chain Aldehyde R' = H, ketone R' = alkyl chain

Nucleophilic addition-elimination

$$\begin{array}{c|c}
 & O \\
 & O \\
 & R \\
 & Nu
\end{array} + LG$$

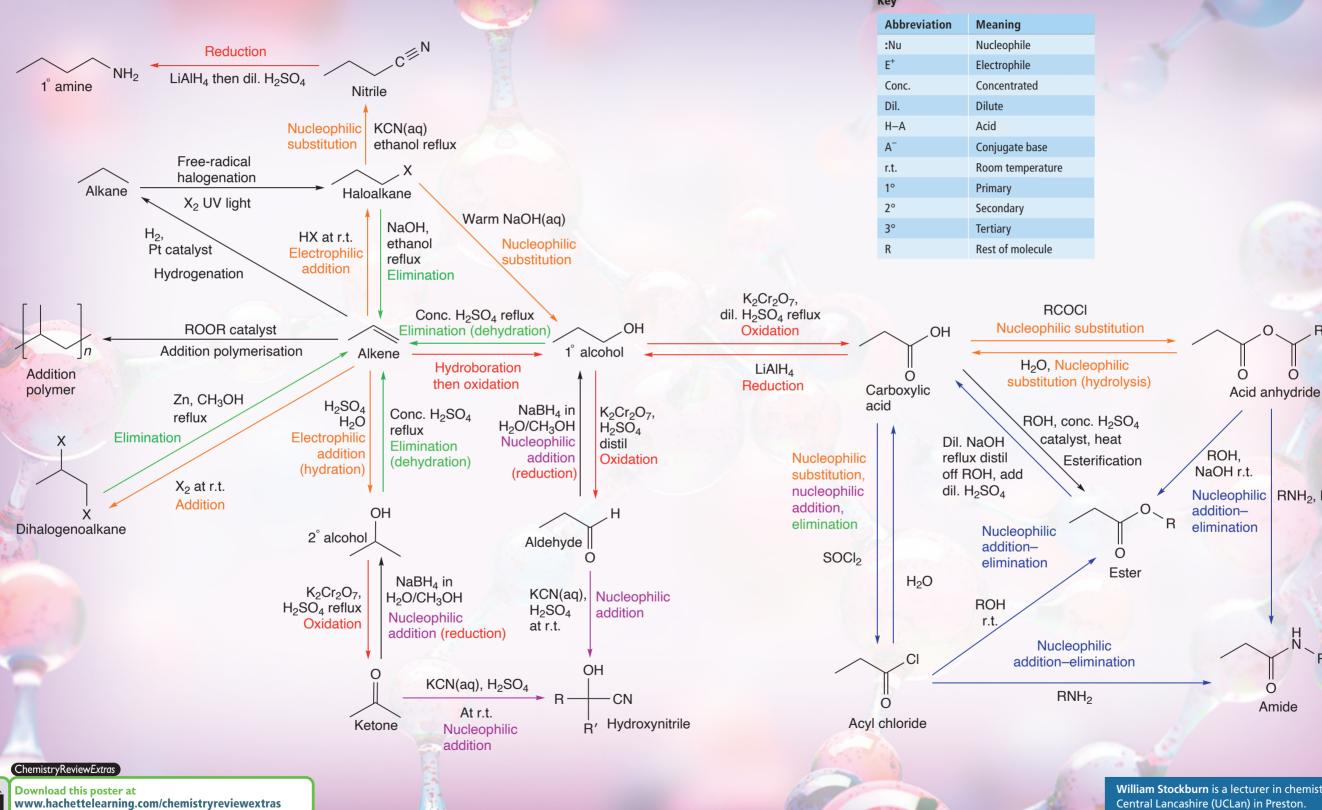
LG = leaving group (for example, Cl)

Nucleophilic substitution: general mechanism

A nucleophile attacks an electron-deficient carbon atom and the electron withdrawing group (X) leaves. The nucleophile must always have a spare pair of electrons it can donate to make the

$$\begin{array}{c}
H \\
Nu H^{1/2} \xrightarrow{\delta_{+}} X^{\delta_{-}} \longrightarrow Nu \xrightarrow{H} X^{-} \\
R
\end{array}$$

Nucleophilic substitution: amine formation


When NH₃ or an amine (RNH₂ or R₂NH) is the nucleophile, there is an additional deprotonation step in the mechanism:

Deprotonation step

X = halogen

Chemistry Lreview

Organic reactions overview

William Stockburn is a lecturer in chemistry at the University of Central Lancashire (UCLan) in Preston.

Amide

RNH₂, NaOH