

www.hachettelearning.com/chemistryreview

Volume 34, Number 3, February 2025

Answers

Practice exam questions

Anne Hodgson

Check your answers to the questions in this issue.

A new wave of chemistry: how geochemistry can predict tsunamis (pp. 23–25)

Mean titre volume of EDTA = $\frac{19.14 + 19.17 + 19.13}{3}$ = 19.15 cm³ = 0.01915 dm³

 $0.01915~dm^3$ of $0.01~mol~dm^{-3}$ EDTA contains 0.0001915~mol of EDTA

1 mole of EDTA reacts with 1 mole of Ca^{2+} , therefore 25.00 cm³ of the test solution contains 0.0001915 mol of Ca^{2+}

 $25.00 \text{ cm}^3 = 0.02500 \text{ dm}^3$

Concentration of Ca²⁺ in the sample = $\frac{0.0001915 \text{ mol}}{0.02500 \text{ dm}^3} = 0.00766 \text{ mol dm}^{-3}$

CFCs, HFCs and the ozone layer (pp. 26-31)

1 a i CFC-13

ii HCFC-225 (HCFC-225ca)

b i CHCl₂F

ii C₂HCl₂F₃ (actually CHCl₂CF₃)

2 a $i^{12}C^{37}CIF_3^+$ (or $^{14}C^{35}CIF_3^+$)

ii 12C35CIF2+

iii 12CF₃+

iv 12CF₂+

- **b** The C–Cl bond energy is smaller than the C–F bond energy, which means that the C–Cl bond preferentially breaks. This leads to the CF₃⁺ ion being more abundant, rather than CClF₂⁺.
- All the fluorine atoms in Cl₃C.CF₃ are in the same electronic environment, whereas those in ClF₂C.CCl₂F experience two different environments (being attached to different carbons with differing numbers of chlorines and fluorines). Therefore Cl₃C.CF₃ will give a simpler spectrum (than ClF₂C.CCl₂F), with just one signal.

www.hachettelearning.com/chemistryreview

This resource is part of CHEMISTRY REVIEW, a magazine written for A-level students by subject experts. To subscribe to the full magazine, go to www.hachettelearning.com/chemistryreview