

www.hoddereducation.com/chemistryreview

Volume 33, Number 4, April 2024

Answers

Practice exam questions

Anne Hodgson

Check your answers to the questions in this issue.

Artemisinin: a valuable but limited antimalarial resource (pp. 2–7)

1 The artemisinin molecule has the formula C₁₅H₂₂O₅. All 15 carbons have different environments to each other (i.e. there are no equivalent carbons), so there are 15 peaks in the spectrum.

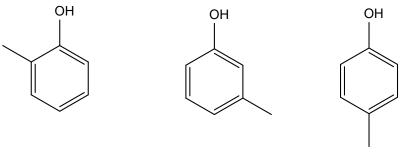
2

a The most downfield peak, at 172.46 ppm, is due to the C=O group (carbon 13 in the structure above).

b There are three other carbon atoms (labelled 2, 11 and 12 in the structure above) next to very electronegative oxygens, which will shift their signals downfield too. Carbons 2 and 12 are in fact bound to two oxygens, so are likely to be shifted the most (as is the case) to 105.78 and 94.11 ppm, respectively.

c Carbon 11 corresponds to 79.90 ppm.

www.hoddereducation.com/chemistryreview


Sniffing out cancer (pp. 8–11)

1

* Note that other positional isomers are acceptable

2

2-Methylphenol

3-Methylphenol

4-Methylphenol

3

Compound	Relative molecular mass
Ethylphenol	(8 × 12) + (10 × 1) + 16 = 122
Methylphenol	(7 × 12) + (8 × 1) + 16 = 108
Phenol	(6 × 12) + (6 × 1) + 16 = 94
Hexanoic acid	(6 × 12) + (12 × 1) + (2 × 16) = 116

This resource is part of CHEMISTRY REVIEW, a magazine written for A-level students by subject experts. To subscribe to the full magazine, go to www.hoddereducation.com/chemistryreview