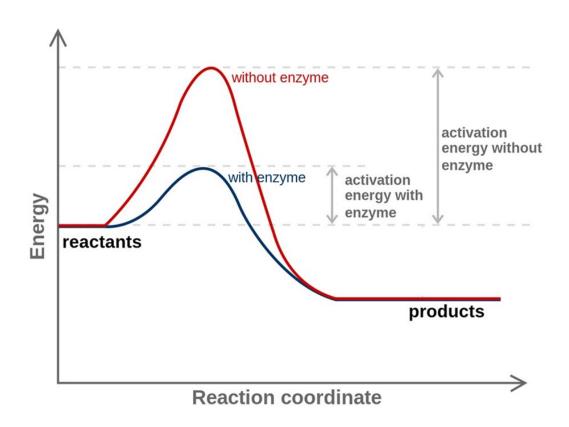


www.hoddereducation.co.uk/chemistryreview

Volume 32, Number 4, April 2023

Answers

Practice exam questions


Anne Hodgson

Check your answers to the questions in this issue.

Going green with enzymes (pp. 2-5)

- 1 a primary alcohol
 - **b** secondary alcohol
 - **c** thiol
 - d carboxyl (carboxylic acid)
 - e amino (primary amine)
 - f phenol

2

www.hoddereducation.co.uk/chemistryreview

Stable and unstable compounds (pp. 24–27)

1 a i
$$XeF_2 = +2$$

ii $XeF_4 = +4$
iii $XeF_6 = +6$
iv $XeO_3 = +6$
b i $NH_3 = -3$
ii $NF_3 = +3$

- 2 The oxidation states of the elements do not change, so the reaction does not involve redox. Xenon remains +6, fluorine -1, oxygen -2 and hydrogen +1.
- 3 Do an electron count. An arsenic atom has 5 outer-shell electrons. 6 chlorines supply 6 electrons. Add one for the negative charge, totalling 12 electrons. That means 6 electron pairs these will be arranged octahedrally around arsenic, so the answer is an octahedron.
- 4 Calculate the energy needed to break the N₂ and 3H₂ molecules into their constituent atoms.

 $\Delta H = +945 + 3(436) = +2253 \text{ kJ mol}^{-1}$ (bond breaking, so endothermic).

Now calculate the energy released when assembling the 2N and 6H atoms into two molecules of ammonia:

 $\Delta H = 6(-391) = -2346 \text{ kJ mol}^{-1} \text{ (bond making, so exothermic)}.$

Overall, for the reaction as shown in the equation:

$$\Delta H = +2253 - 2346 = -93 \text{ kJ mol}^{-1}$$

This forms two moles of ammonia, so enthalpy of formation of NH₃ is:

$$\Delta H_f (NH_3) = -93 \div 2 = -46.5 \text{ kJ mol-1}$$

This resource is part of CHEMISTRY REVIEW, a magazine written for A-level students by subject experts. To subscribe to the full magazine go to www.hoddereducation.co.uk/chemistryreview