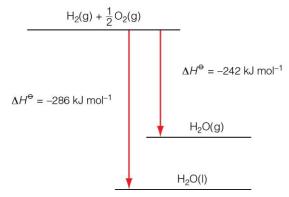
Pages 259–261 Exam practice questions

- 1 a) Insulated [1] polystyrene beaker/container [1], 0–50 °C thermometer. [1]
 - b) i) $Mg(s) + CuSO_4(aq) \rightarrow MgSO_4(aq) + Cu(s)$ [1]
 - ii) Energy transferred = $50 \text{ g} \times 4.18 \text{ J g}^{-1} \text{ K}^{-1} \times 5.0 \text{ K}$ [1] = 1045 J [1]
 - iii) Any two of:
 - the density of the solution = 1.0 g cm⁻³
 - the specific heat capacity of the solution = $4.18 \text{ J g}^{-1} \text{ K}^{-1}$
 - the mass of magnesium added is ignored. [2]
 - iv) Amount of CuSO₄ used = $\frac{50}{1000}$ dm³ × 0.040 mol dm⁻³ = 0.0020 mol [1]

Energy transferred for 1 mol CuSO₄ =
$$\frac{1045 \text{ J}}{0.0020 \text{ mol}}$$
 [1]
= 522 000 J mol⁻¹


Enthalpy change = $-520 \text{ kJ mol}^{-1} (2 \text{ s.f.})$ [1]

- 2 a) Energy needed = $500 \text{ g} \times 4.18 \text{ J g}^{-1} \text{ K}^{-1} \times 80 \text{ K} = 167 \text{ kJ [1]}$
 - b) Energy from burning butane = 2876 kJ mol^{-1} Amount of butane burnt to heat the water = $167 \text{ kJ} \div 2876 \text{ kJ mol}^{-1} = 0.0581 \text{ mol}$. [1]
 - c) Volume of butane needed = $0.0581 \text{ mol} \times 24 \text{ dm}^3 \text{ mol}^{-1} = 1.4 \text{ dm}^3 (2 \text{ s.f.}) [1]$
 - d) The calculation assumes that combustion of butane to carbon dioxide and water is complete [1], and that all the energy from the flame heats the water and not the container or the surroundings. [1]
- 3 a) $CH_3COONa(aq)[1] + CO_2(g) + H_2O(l)[1]$
 - **b)** To avoid any spillage/loss of reactants due to the effervescence of $CO_2(g)$. [1]
 - c) Energy change = $50 \text{ g} \times 4.18 \text{ J g}^{-1} \text{ K}^{-1} \times 8.0 \text{ K}$ [1] = 1672 J [1]
 - d) Amount of ethanoic acid = $\frac{50}{1000}$ dm³ × 1.0 mol dm⁻³ = 0.050 mol [1]
 - e) 0.050 mol ethanoic acid absorbs 1672 J

Therefore 1 mol ethanoic acid absorbs
$$\frac{1672 \text{ J}}{0.050 \text{ mol}} = 33\,400 \text{ J mol}^{-1} [1]$$

Standard enthalpy change of reaction = +33 000 J mol⁻¹ or + 33 kJ mol⁻¹ [2] ([1] for 33, [1] for sign and units)

f) Two significant figures because the data for the volume of acid, the concentration of acid and the temperature rise are given to 2 significant figures. [1]

4 a) Upper level [1]; lower levels with labelled axes. [2]

- b) Enthalpy change = +44 kJ mol⁻¹ [2] ([1] for sign, [1] for the value)
- 5 a) The standard enthalpy change of combustion of a substance, $\Delta_c H^{\ominus}$, is the enthalpy change when one mole of the substance [1] burns completely in oxygen [1] under standard conditions. [1]
 - b) $CH_3CH_2CH_3(I) + 5O_2(g) \rightarrow 3CO_2(g) + 4H_2O(I)$ [2] (combustion products [1]; balancing [1])
 - c) The standard enthalpy change of formation of a compound, $\Delta_f H^{\ominus}$, is the enthalpy change when one mole of the compound [1] forms from its elements under standard conditions [1] with the elements and the compound in their standard (stable) states. [1]
 - d) $3C(s, graphite) + 3H_2(g) + \frac{1}{2}O_2(g) \rightarrow CH_3CH_2CHO(I)$ [2] (elements in correct states [1], balancing [1])
- 6 a) $CaSO_4.2H_2O(s) \rightarrow CaSO_4(s) + 2H_2O(g)$ [2] ([1] for balanced equation, [1] for state symbols)
 - b) Endothermic [1], because bonds must be broken between CaSO₄ and H₂O molecules [1] and no new bonds are formed.
 - c) Because it is difficult to determine just how much energy is required to decompose a known mass of the hydrate. The salt has to be heated to a high temperature at which it is impossible to measure the energy changes. [1]
 - d) $\Delta_r H^{\ominus} = \Delta_f H^{\ominus}[CaSO_4(s)] + 2\Delta_f H^{\ominus}[H_2O(I)] \Delta_f H^{\ominus}[CaSO_4.2H_2O(s)]$ [2] = $(-1434 \text{ kJ mol}^{-1}) + (2 \times -286 \text{ kJ mol}^{-1}) - (-2023 \text{ kJ mol}^{-1})$ [1] = $+17 \text{ kJ mol}^{-1}$ [2] ([1] for 17, [1] for sign and units)

7 a) Reaction 1

$$\Delta_{\rm r}H = \Delta_{\rm f}H^{\ominus}[{\rm CO}_{2}({\rm g})] - \Delta_{\rm f}H^{\ominus}[{\rm SnO}_{2}({\rm s})] \quad [1]$$

$$= (-394 \text{ kJ mol}^{-1}) - (-581 \text{ kJ mol}^{-1})$$

$$= +187 \text{ kJ mol}^{-1} \quad [2]$$
([1] for 187, [1] for sign and units)

Reaction 2

$$\Delta_r H = 2\Delta_f H^{\oplus}[CO(g)] - \Delta_f H^{\oplus}[SnO_2(s)] [1]$$

$$= (2 \times -110 \text{ kJ mol}^{-1}) - (-581 \text{ kJ mol}^{-1})$$

$$= -220 + 581 = +361 \text{ kJ mol}^{-1} [2]$$
([1] for 361, [1] for sign and units)

b) Both reactions are endothermic requiring an input of energy using fuels.

The energy input and therefore fuel used in Reaction 1 is less than Reaction 2 [1], so on just this basis Reaction 1 is more economic. [1]

- 8 a) i) Box top right: $2CO_2(g) + 3H_2O(l)$ [1] Box below: $2C(s) + 3H_2(g) + 3.5O_2(g)$ [1]
 - ii) The standard enthalpy change of formation of a compound is the enthalpy change when one mole of the compound [1] forms from its elements [1] under standard conditions with the elements and the compound in their standard (stable) states. [1]

iii)
$$\Delta H_1 = \Delta_f H^{\oplus} [C_2 H_5 OH(I)] = -277 \text{ kJ mol}^{-1} [1]$$

 $\Delta H_2 = 2\Delta_f H^{\oplus} [CO_2(g)] + 3\Delta_f H^{\oplus} [H_2 O(I)] [1]$
 $= (2 \times -394 \text{ kJ mol}^{-1}) + (3 \times -286 \text{ kJ mol}^{-1}) = -1646 \text{ kJ mol}^{-1} [1]$
 $\Delta_c H [\text{ethanoI}] = -\Delta H_1 + \Delta H_2 [1]$
 $= -(-277 \text{ kJ mol}^{-1}) + (-1646 \text{ kJ mol}^{-1}) = -1369 \text{ kJ mol}^{-1} [2]$
([1] for 1369, [1] for sign and units)

- b) i) Energy transferred = $150 \text{ g} \times 4.18 \text{ J g}^{-1} \text{ K}^{-1} \times 14.8 \text{ K}$ [1] = 9279.6 J [1]
 - ii) Amount of ethanol burnt = $0.898 \text{ g} \div 46 \text{ g mol}^{-1} = 0.019 52 \text{ mol}$ [1] Energy transferred per mole of ethanol burnt = $9279.6 \text{ J} \div 0.019 52 \text{ mol}$ = $475 390 \text{ J mol}^{-1}$ = $475 \text{ kJ mol}^{-1} (3 \text{ s.f.})$

 $\Delta_{\rm c}H[{\rm ethanol}] = -475~{\rm kJ~mol}^{-1}~[2]$

for the combustion of ethanol. Most of the energy from the flame is not transferred to the water but heats up the rest of the apparatus and the surrounding air. [1]

Enthalpy changes of formation in tables of data are derived from enthalpy changes measured by much more sophisticated apparatus such as a bomb calorimeter. [1]

([1] for each molecule)

b) Bonds broken

Bonds formed

3 C-C

8 C=O

10 C-H

10 H-O [1]

 $6\frac{1}{2}$ O=O [1]

c) Enthalpy change = $+(3 \times 347 \text{ kJ mol}^{-1}) + (10 \times 413 \text{ kJ mol}^{-1}) + (6\frac{1}{2} \times 498 \text{ kJ mol}^{-1})$ [1] $-(8 \times 805 \text{ kJ mol}^{-1}) - (10 \times 464) \text{ kJ mol}^{-1}$ [1] = $+8408 \text{ kJ mol}^{-1} - 11080 \text{ kJ mol}^{-1}$ = $-2672 \text{ kJ mol}^{-1}$ [2]

([1] for 2672, [1] for sign and units)

d) The bond enthalpies values are averages for a range of molecules and so are not exactly the right values for all the molecules in this reaction. [1]

Bond enthalpy values apply to molecules in the gas phase. Water is a liquid at 298 K and the energy change for water condensing from a gas to a liquid alters the value at 298 K. [1]

10 a) Reaction 1

Bonds broken

Bonds formed

1 C-H

1 C-Br

1 Br-Br

1 H-Br [1]

Enthalpy change =
$$+413 \text{ kJ mol}^{-1} + 193 \text{ kJ mol}^{-1} - 290 \text{ kJ mol}^{-1} - 366 \text{ kJ mol}^{-1}$$
 [1]
= -50 kJ mol^{-1} [1]

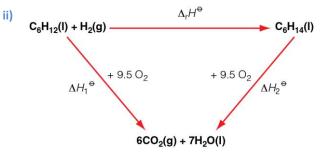
Reaction 2

Bonds broken

Bonds formed

1 C-C

2 C-Br


1 Br-Br

[1]

Enthalpy change =
$$+347 \text{ kJ mol}^{-1} + 193 \text{ kJ mol}^{-1} - (2 \times 290) \text{ kJ mol}^{-1}$$
 [1]
= -40 kJ mol^{-1} [1]

- b) Any two good points in an argument [2] such as:
 - The enthalpy change for Reaction 1 is more negative than for Reaction 2, which might explain why it is the one that is observed to happen.
 - However the difference is small. As explained in Section 2.6 of Student Book 1, the
 enthalpy change for a reaction is not a reliable guide to the preferred direction of change.
 Other factors are involved.
 - Sometimes it is the reaction that goes faster that is preferred even when an alternative is
 more exothermic. In this instance, the energy required to break a C-H bond in Reaction 1
 is greater than the energy required to break a C-C bond in Reaction 2. Easier breakage of
 the C-C bond in Reaction 2 could suggest that this reaction is likely to happen more easily.
- c) Mean bond enthalpies do not always tally with the bond strengths in specific compounds. [1] Mean bond enthalpies are calculated assuming substances are gases whereas bromine in both reactions and C₂H₅Br in Reaction 1 are liquids. [1]
- 11 a) i) $C_6H_{12}(I) + H_2(g) \rightarrow C_6H_{14}(I)$ [1]

A metal catalyst is used, usually one of nickel, palladium or platinum. [1]

Cycle [1] Balanced combustion products [1]; adding in 9.5 O₂ twice. [1]

iii)
$$\Delta H_1 = \Delta_c H^{\oplus}[C_6 H_{12}(I)] + \Delta_c H^{\oplus}[H_2(g)]$$

 $= -4003 \text{ kJ mol}^{-1} + (-286 \text{ kJ mol}^{-1}) = -4289 \text{ kJ mol}^{-1}[1]$
 $\Delta H_2 = \Delta_c H^{\oplus}[C_6 H_{14}(I)] = -4163 \text{ kJ mol}^{-1}$ [1]
 $\Delta_c H = \Delta H_1 - \Delta H_2 = -4289 \text{ kJ mol}^{-1} - (-4163 \text{ kJ mol}^{-1}) = -126 \text{ kJ mol}^{-1}$ [1]

- b) For all the alkanes the reaction is essentially the same. Each alkene has a C=C double bond.
 - One of the two C–C bonds breaks and an H–H bond breaks. Two new C–H bond form. [1] The only difference in each case is the number of unreactive carbon and hydrogen atoms in the alkene. [1] The molecules are all very similar and so the bond enthalpies have almost the same value. [1]
- 12 a) i) This is important in many forms of transport but especially in aviation because the fuel has to be lifted. [1]
 - ii) Energy given out per gram from burning methanol:

726 kJ
$$\text{mol}^{-1} \div 32 \text{ g mol}^{-1} = 22.7 \text{ kJ g}^{-1}$$
 [1]

Energy given out per gram from burning octane:

5470 kJ
$$\text{mol}^{-1} \div 114 \text{ g mol}^{-1} = 47.5 \text{ kJ g}^{-1}$$
 [1]

- b) i) This is important wherever the space for storing the fuel is limited, for example on a motorcycle.
 - ii) Energy given out per cm³ from burning methanol

=
$$(726 \text{ kJ mol}^{-1} \times 0.793 \text{ g cm}^{-3}) \div 32 \text{ g mol}^{-1}$$

= $18.0 \text{ kJ cm}^{-3} [1]$

Energy given out per cm³ from burning octane

=
$$(5470 \text{ kJ mol}^{-1} \times 0.703 \text{ g cm}^{-3}) \div 114 \text{ g mol}^{-1}$$

= 33.7 kJ cm^{-3} [1]

c) This question assesses a student's ability to show a coherent and logically structured answer with linkages and fully sustained line of reasoning. Assess the quality of the answer taking into account both the key points made (up to 4 marks) and the logic and coherence of the discussion (up to 2 marks).

Points to make in the answer:

- Octane provides more energy per gram or per cm³.
- All the atoms in the fuel react with oxygen when it burns, unlike methanol which includes oxygen atoms in its molecules.
- For aviation there is a clear benefit to using the hydrocarbon fuel.
- However, octane is obtained from a non-renewable resource
- Octane requires much more oxygen for complete combustion (over 8 times as much per mole) so a much larger volume of air has to be supplied to burn the fuel.
- Methanol has the potential to become a more sustainable fuel because it can be made from a wide range of renewable resources, including many wastes.