Pages 234–236 Exam practice questions

- 1 a) Peak 1 is $C_2H_3^+$; peak 2 is $C_2H_5^+$; peak 3 is CH_2OH^+ ; peak 4 is $C_2H_5O^+$; peak 5 is $C_2H_5OH^+$. ([3] less [1] for each error)
 - b) $CH_3CH_2OH + e^-[1] \rightarrow CH_3CH_2OH^+ + 2e^-[1]$
 - c) i) $CH_3CH_2OH^+[1] \rightarrow CH_3 + CH_2OH^+[1]$
 - ii) The CH₃ fragment is an uncharged radical. [1] A mass spectrometer only detects ions. [1]
- 2 This question assesses a student's ability to show a coherent and logically structured answer with linkages and fully sustained line of reasoning. Assess the quality of the answer taking into account both the key points made (*up to 4 marks*) and the logic and coherence of the discussion (*up to 2 marks*).

Points to make in the answer:

- There is no broad –OH peak as expected for a carboxylic acid, which suggests that the product of oxidation is an aldehyde or a ketone and not a carboxylic acid.
- The different C=O absorptions for aldehydes and ketones are too close so which is formed cannot be decided from this spectrum.
- The oxidation was carried out with a limited amount of potassium dichromate(VI) in acid conditions.
- If the aldehyde, the product was distilled off as it formed to avoid further oxidation to the acid.
- Possible primary alcohols are CH₃CH₂CH₂CH₂OH (butan-1-ol) or (CH₃)₂CHCH₂OH (2-methylpropan-1-ol).
- If a ketone, the possible secondary alcohol is CH₃CH₂CH(OH)CH₃ (butan-2-ol).
- 3 a) i) There are two forms of chloroethane, CH₃CH₂³⁵Cl (relative mass 64) and CH₃CH₂³⁷Cl (relative mass 66). [1]
 - ii) The chlorine-35 isotope is three times as abundant as the chlorine-37 isotope. [1]
 - b) i) $M_r = 97$ uses the relative atomic mass of 35.5 for chlorine, which is the weighted average of the isotopes. [1] There is no individual Cl atom with this mass. [1]
 - ii) In a molecular ion of C₂H₂Cl₂ with two chlorine atoms the possibilities are: most likely two atoms of chorine-35 (96) [1]; next, one of chlorine-35 and one of chlorine-37 (98) [1]; and least likely two atoms of chlorine-37 (100). [1]
 - The adjacent peaks differ by two mass units and the expected ratio is 9:6:1.
 - iii) These two peaks are from fragments formed by the loss of one chlorine atom leaving a single chlorine atom in the fragment. [1] So the ratio of abundances corresponds to the ratio of abundances of the isotopes. [1]

7 Modern analytical techniques I

Answers to Exam practice questions

```
4 a) M_r C_5 H_{12} = 72.1483

M_r C_4 H_8 O = 72.1054

M_r C_3 H_4 O_2 = 72.0625 ([1] for all three)

So the molecular formula of the compound is C_3 H_4 O_2 [1]
```

- b) Effervescence confirms the presence of acid group COOH [1] so the structure is H₂C=CH-COOH. [1]
- 5 The absorptions in their IR spectra at about 1720 cm⁻¹ are due to C=O [1] so **A** and **B** are carbonyl compounds.

Apart from the molecular ion at m/z = 58, the mass spectrum of **A** had major peaks at m/z = 43 and 15, i.e. loss of 15 or CH₃ leaving C₂H₃O⁺ or CH₃C=O⁺ [1] and m/z = 15 is CH₃⁺. So **A** is propanone, CH₃COCH₃. [1]

Apart from the molecular ion at m/z = 58, the mass spectrum of **B** had a major peak at m/z = 29, i.e. loss of 29 or CH_3CH_2 leaving CHO^+ [1] or loss of CHO leaving $CH_3CH_2^+$. So **B** is propanal CH_3CH_2 CHO. [1]

The IR spectrum of \mathbf{C} has absorptions at 1645 cm⁻¹ (corresponding to a C=C bond) [1] and at 3300 cm⁻¹ (corresponding to an O-H alcohol bond). [1]

Possible structures could in theory be $H_2C=CH-CH_2OH$ or $HC(OH)=CH-CH_3$ or $H_2C=C(OH)-CH_3$ Apart from the molecular ion at m/z=58, the mass spectrum of **C** had major peaks at m/z=57 and 31.

To form a fragment of m/z = 31 requires loss of 27 or $H_2C=CH-[1]$, so **C** is prop-2-en-1-ol, $H_2C=CH-CH_2OH$. [1]

- 6 a) A: hexan-3-one [1]
 - B: hex-1-ene [1]
 - **C**: hexan-1-ol [1]
 - D: 1-chlorohexane [1]
 - b) i) Warm, aqueous [1] NaOH [1]; nucleophilic substitution [1]
 - ii) Potassium dichromate(VI) in acid [1]

 Peak at 3750–3200 cm⁻¹ [1] due to O–H (alcohol) should have disappeared if reaction is complete. [1]

7 C: 54.5% H: 9.1% O: 36.4% [1]
$$\frac{54.5}{12.0} \qquad \frac{9.1}{1.0} \qquad \frac{36.4}{16.0} \quad [1]$$
$$= 4.54 = 9.1 = 2.28$$

Empirical formula = C_2H_4O [1]

 M_r = 88, so molecular formula is $C_4H_8O_2$. [1]

IR peak at 3408 cm⁻¹ is due to O-H (alcohol) [1] and peak at 1709 cm⁻¹ is due to C=O. [1]

7 Modern analytical techniques I

Answers to Exam practice questions

MS peak at m/z = 43 due to CH_3CO^+ [1] (cannot be $C_3H_7^+$ because X is not a carboxylic acid). Possible structures = $CH_3COCH_2CH_2OH$ or $CH_3COCH(OH)CH_3$ [1] Oxidation formed compound **Y** which gave an IR peak at 3087 cm⁻¹. This is due to O–H (acid). [1] So **X** must be a primary alcohol, i.e. $CH_3COCH_2CH_2OH$. [1] **Y** is CH_3COCH_2COOH . [1]